A. | r∈(0,1] | B. | r∈(1,2] | C. | r∈[$\sqrt{3}$,4) | D. | r∈[ln2,+∞) |
分析 分l⊥x轴与l不与x轴垂直两种情况讨论,当l不与x轴垂直时,设直线l:x=my+1,与抛物线方程y2=4x联立,设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),结合题意,可求得4$\sqrt{{m}^{2}+1}$=$\frac{2r}{\sqrt{{m}^{2}+1}}$,继而可得r>2,从而可得答案.
解答 解:①当l⊥x轴时,过x=1与抛物线交于(1,土2),与圆交于(1,土r),满足题设.
②当l不与x轴垂直时,设直线l:x=my+1,(1)
代入y2=4x,得y2-4my-4=0,
△=16(m2+1),
把(1)代入:(x-1)2+y2=r2得y2=$\frac{{r}^{2}}{{m}^{2}+1}$,
设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),
∵|AC|=|BD|,
∴y1-y3=y2-y4,y1-y2=y3-y4,
∴4$\sqrt{{m}^{2}+1}$=$\frac{2r}{\sqrt{{m}^{2}+1}}$,
即r=2(m2+1)>2,
即r>2时,l仅有三条.
考查四个选项,只有D中的区间包含了(2,+∞)
故选:D.
点评 本题考查直线与圆锥曲线的位置关系,考查等价转化思想与分类讨论思想,求得r=2(m2+1)是关键,考查综合运算能力,属于难题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {x|x∈R,且x≠-$\frac{π}{3}$} | B. | {x|x∈R,且x≠$\frac{5}{6}π$} | ||
C. | {x|x∈R,且x≠kπ+$\frac{5}{6}$π,k∈Z} | D. | {x|x∈R,且x≠kπ-$\frac{5}{6}$π,k∈Z} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com