精英家教网 > 高中数学 > 题目详情
7.已知抛物线M:y2=4x,圆N:(x-1)2+y2=r2(其中r为常数,r>0).过点(1,0)的直线l交圆N于C、D两点,交抛物线M于A、B两点,且满足|AC|=|BD|的直线l只有三条的必要不充分条件是(  )
A.r∈(0,1]B.r∈(1,2]C.r∈[$\sqrt{3}$,4)D.r∈[ln2,+∞)

分析 分l⊥x轴与l不与x轴垂直两种情况讨论,当l不与x轴垂直时,设直线l:x=my+1,与抛物线方程y2=4x联立,设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),结合题意,可求得4$\sqrt{{m}^{2}+1}$=$\frac{2r}{\sqrt{{m}^{2}+1}}$,继而可得r>2,从而可得答案.

解答 解:①当l⊥x轴时,过x=1与抛物线交于(1,土2),与圆交于(1,土r),满足题设.
②当l不与x轴垂直时,设直线l:x=my+1,(1)
代入y2=4x,得y2-4my-4=0,
△=16(m2+1),
把(1)代入:(x-1)2+y2=r2得y2=$\frac{{r}^{2}}{{m}^{2}+1}$,
设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),
∵|AC|=|BD|,
∴y1-y3=y2-y4,y1-y2=y3-y4
∴4$\sqrt{{m}^{2}+1}$=$\frac{2r}{\sqrt{{m}^{2}+1}}$,
即r=2(m2+1)>2,
即r>2时,l仅有三条.
考查四个选项,只有D中的区间包含了(2,+∞)
故选:D.

点评 本题考查直线与圆锥曲线的位置关系,考查等价转化思想与分类讨论思想,求得r=2(m2+1)是关键,考查综合运算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知实数x,y满足x2+y2≤1,则
(1)(x+2)2+(y-2)2的最小值是9-4$\sqrt{2}$;
(2)|2x+y-4|+|6-x-3y|的最大值是15.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在如图所示的正方体中.
(1)指出哪些棱与BB1是异面直线,哪些棱与对角线BD1是异面直线.
(2)分别求出直线DD1与BC1、A1D1及DC1所成的角度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,已知tanAtanB=$\frac{4}{3}$,
(1)求tanC的取值范围;
(2)若△ABC边AB上的高CD=2.求△ABC面积S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=tan($\frac{π}{3}$-x)的定义域是(  )
A.{x|x∈R,且x≠-$\frac{π}{3}$}B.{x|x∈R,且x≠$\frac{5}{6}π$}
C.{x|x∈R,且x≠kπ+$\frac{5}{6}$π,k∈Z}D.{x|x∈R,且x≠kπ-$\frac{5}{6}$π,k∈Z}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.tan(-210°)-cos(-210°)=$\frac{\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知α∥β∥γ,直线a与b分别交α,β,γ于点A,B,C和D,E,F,且AB=2,BC=3,DE=4,则EF=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知cosα=$\frac{1}{4}$,求$\frac{sin(2π+α)cos(-π+α)}{cos(-α)tanα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.
(1)求数列{an}的通项公式;
(2)若bn=anlog${\;}_{\frac{1}{2}}$an,数列{bn}的前n项和为Sn,求使Sn+n•2n+1>30成立的正整数n的最小值.

查看答案和解析>>

同步练习册答案