精英家教网 > 高中数学 > 题目详情

【题目】已知圆经过点,圆的圆心在圆的内部,且直线被圆所截得的弦长为.为圆上异于的任意一点,直线轴交于点,直线轴交于点.

1)求圆的方程;

2)求证: 为定值.

【答案】1;(2)见解析.

【解析】试题分析:(1)首先根据条件设出圆心及半径,然后利用弦长公式求得半径,再利用点到直线的距离公式求得圆心,从而求得圆的方程;(2)直线的斜率不存在可直接求出定值,直线与直线的斜率存在时,设点,由此得到直线的方程与的方程,从而求得点的坐标,进而利用向量数量积公式求出定值.

试题解析:(1) 易知点在线段的中垂线上,故可设,的半径为

直线被圆所截得的弦长为,且到直线的距离,.

又圆的圆心在圆的内部,

,的方程.

2)证明: 当直线的斜率不存在时, . 当直线与直线的斜率存在时,

,直线的方程为,.

直线的方程为, .

,

为定值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1时,讨论的单调性;

2若对任意的恒有成立,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面,底面是直角梯形,,上的点.

(1)求证: 平面平面

(2)若的中点,且二面角的余弦值为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设不等式组所表示的平面区域为,记内的整点个数为,(整点即横、纵坐标均为整数的点)

(1)计算的值;

(2)求数列的通项公式

(3)记数列的前项和为,且,若对于一切的正整数,总有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数在区间上, 均可为一个三角形的三边长,则称函数三角形函数.已知函数在区间上是三角形函数,则实数的取值范围为( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次测量中得到的A样本数据如下:82848486868688888888若样本B数据恰好是样本A数据都加上2后所得数据AB两样本的下列数字特征对应相同的是(  )

A. 众数 B. 平均数

C. 中位数 D. 标准差

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线过点

(1)求圆的圆心坐标和半径;

(2)若直线与圆相切,求直线的方程;

(3)若直线与圆相交于PQ两点,求三角形CPQ的面积的最大值,并求此时

直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的焦点在轴上.

(1)若椭圆的焦距为1,求椭圆的方程;

(2)设分别是椭圆的左、右焦点,为椭圆上第一象限内的点,直线轴于点,并且.证明:当变化时,点在定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一个铝合金窗分为上、下两栏,四周框架和中间隔档的材料为铝合金,宽均为6,上栏与下栏的框内高度(不含铝合金部分)的比为1:2,此铝合金窗占用的墙面面积为28800,设该铝合金窗的宽和高分别为,铝合金窗的透光部分的面积为.

(1)试用表示

(2)若要使最大,则铝合金窗的宽和高分别为多少?

查看答案和解析>>

同步练习册答案