精英家教网 > 高中数学 > 题目详情
(2009•东营一模)已知函数f(x)=x3+ax2+bx+c在x=1与x=-
2
3
时,都取得极值.
(1)求a,b的值;
(2)若f(-1)=
3
2
,求f(x)的单调区间和极值;
(3)若对x∈[-1,2]都有f(x)<
3
c
恒成立,求c的取值范围.
分析:(1)求出f′(x)并令其等于0得到方程,把x=1,x=-
2
3
代入求出a、b即可;
(2)利用函数与导函数,建立表格,根据导数的正负,确定函数的单调性,从而确定函数的极值;
(3)求出函数的最大值为f(2),要使对x∈[-1,2]都有f(x)<
3
c
恒成立,利用函数的最大值,建立不等式,从而可求出c的取值范围.
解答:解:(1)求导函数,可得f′(x)=3x2+2a x+b.
由题设,∵函数f(x)=x3+ax2+bx+c在x=1与x=-
2
3
时,都取得极值.
∴x=1,x=-
2
3
为f′(x)=0的解.
∴-
2
3
a=1-
2
3
b
3
=1×(-
2
3
).
解得a=-
1
2
,b=-2(4分)
此时,f′(x)=3x2-x-2=(x-1)(x+
2
3
),x=1与x=-
2
3
都是极值点.(5分)
(2)f (x)=x3-
1
2
x2-2 x+c,由f (-1)=-1-
1
2
+2+c=
3
2
,∴c=1.
∴f (x)=x3-
1
2
x2-2 x+1.
x (-∞,-
2
3
(-
2
3
,1)
(1,+∞)
f′(x) + - +
∴f (x)的递增区间为(-∞,-
2
3
),及(1,+∞),递减区间为(-
2
3
,1).
当x=-
2
3
时,f (x)有极大值,f (-
2
3
)=
49
27

当x=1时,f (x)有极小值,f (1)=-
1
2
(10分)
(3)由(1)得,f′(x)=(x-1)(3x+2),f (x)=x3-
1
2
x2-2 x+c,
f (x)在[-1,-
2
3
)及(1,2]上递增,在(-
2
3
,1)递减.
而f (-
2
3
)=-
8
27
-
2
9
+
4
5
+c=c+
22
27
,f (2)=8-2-4+c=c+2.
∴f (x)在[-1,2]上的最大值为c+2.
c+2<
3
c

c2+2c-3
c
<0

c>0
c2+2c-3<0
c<0
c2+2c-3>0

∴0<c<1或c<-3(16分)
点评:本题考查利用导数求函数极值,利用导数研究函数单调性,以及恒成立问题的处理,解题的关键是正确求出导函数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•东营一模)箱子中装有6张卡片,分别写有1到6这6个整数.从箱子中任意取出一张卡片,记下它的读数x,然后放回箱子,第二次再从箱子中取出一张卡片,记下它的读数y,试求:
(Ⅰ)x+y是5的倍数的概率;
(Ⅱ)x-y是3的倍数的概率;
(Ⅲ)x,y中至少有一个5或6的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•东营一模)设命题P:函数f(x)=x+
a
x
(a>0)在区间(1,2)上单调递增;命题Q:不等式|x-1|-|x+2|<4a对任意x∈R都成立.若“P或Q”是真命题,“P且Q”是假命题,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•东营一模)对有n(n≥4)个元素的总体{1,2,…,n}进行抽样,先将总体分成两个子总体{1,2,…,m}和{m+1,m+2,…,n}(m是给定的正整数,且2≤m≤n-2),再从每个子总体中各随机抽取2个元素组成样本.用Pij表示元素i和j同时出现在样本中的概率,则P1n=
4
m(n-m)
4
m(n-m)
; 所有Pij(1≤i<j≤n)的和等于
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•东营一模)若
lim
x→2
x2+ax-2
x2-4
=
3
4
,则a的值为(  )

查看答案和解析>>

同步练习册答案