精英家教网 > 高中数学 > 题目详情

【题目】选修4—4:极坐标与参数方程

在平面直角坐标系中,将曲线 (为参数) 上任意一点经过伸缩变换后得到曲线的图形.以坐标原点为极点,x轴的非负半轴为极轴,取相同的单位长度建立极坐标系,已知直线

Ⅰ)求曲线和直线的普通方程;

Ⅱ)点P为曲线上的任意一点,求点P到直线的距离的最大值及取得最大值时点P的坐标.

【答案】1, 2P

【解析】试题分析:(I)根据伸缩变换的公式代入原方程,可以得到伸缩后的曲线方程;

II利用点P在椭圆上设出参数坐标,根据点到直线的距离公式求三角函数的最值,并求出取得最值时的值.

试题解析:(I)由已知有为参数),消去

代入直线的方程得

曲线的方程为,直线的普通方程为.

II)由(I)可设点 .则点到直线的距离为:

故当,即取最大值

此时点的坐标为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知某运动员每次投篮命中的概率都为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出09之间取整数值的随机数,指定1234表示命中,567890表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了20组随机数:

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

据此估计,该运动员三次投篮恰有两次命中的概率为(

A.0.35B.0.25C.0.20D.0.15

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆,椭圆的长轴长为8,离心率为

求椭圆方程;

椭圆内接四边形ABCD的对角线交于原点,且,求四边形ABCD周长的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的两个顶点A,B的坐标分别为(﹣2,0),(2,0),且AC,BC所在直线的斜率之积等于

(1)求顶点C的轨迹方程;

(2)若斜率为1的直线与顶点C的轨迹交于M,N两点,且|MN|=,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据统计,2017年国庆中秋假日期间,黔东南州共接待游客590.23万人次,实现旅游收入48.67亿元,同比分别增长44.57%55.22%.旅游公司规定:若公司导游接待旅客,旅游年总收入不低于40(单位:百万元),则称为优秀导游.经验表明,如果公司的优秀导游率越高,则该公司的影响度越高.已知甲、乙两家旅游公司各有导游100名,统计他们一年内旅游总收入,分别得到甲公司的频率分布直方图和乙公司的频数分布表如下:

分组

频数

18

49

24

5

Ⅰ)求的值,并比较甲、乙两家旅游公司,哪家的影响度高?

Ⅱ)若导游的奖金(单位:万元),与其一年内旅游总收入(单位:百万元)之间的关系为,求甲公司导游的年平均奖金;

Ⅲ)从甲、乙两家公司旅游收入在的总人数中,用分层抽样的方法随机抽取6人进行表彰,其中有两名导游代表旅游行业去参加座谈,求参加座谈的导游中有乙公司导游的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了部分儿口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探. 由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用.勘探初期数据资料见如表:

(Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为,求,并估计的预报值;

(Ⅱ)现准备勘探新井,若通过1、3、5、7号井计算出的的值(精确到0.01)相比于(Ⅰ)中的值之差不超过10%,则使用位置最接近的已有旧井,否则在新位置打开,请判断可否使用旧井?

(参考公式和计算结果:

(Ⅲ)设出油量与勘探深度的比值不低于20的勘探并称为优质井,那么在原有井号1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是优质井的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某水利部门拟在黄河沿岸修建一所水库,为大致了解甲、乙两地的降水情况,随机选取汛期月份中的一周,将这一周内每日的降水量数据进行统计(单位:),制成如图所示的茎叶图.考虑以下结论:

①甲地本周的平均降水量低于乙地本周的平均降水量;

②甲地本周的中位降水量高于乙地本周的平均降水量;

③甲地本周的降水量众数大于乙地本周的降水量的中位数;

④甲地本周降水量的标准差大于乙地本周降水量的标准差.

其中根据茎叶图能得到的不恰当的统计结论的编号为(

A.①③B.②④C.①④D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求的单调递减的概率;

2)当且为整数时,求二次函数有两个零点的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《朗读者》以精美的文字,最平实的情感读出文字背后的价值,感染了众多听众,中央电视台在2018年推出了《朗读者第二季》,电视台节目组要从2018名观众中抽取50名幸运观众.先用简单随机抽样从2018人中剔除18人,剩下的2000人再按系统抽样方法抽取50人,则在2018人中,每个人被抽取的可能性 ( )

A. 都相等,且为B. 都相等,且为C. 均不相等D. 不全相等

查看答案和解析>>

同步练习册答案