精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥P—ABCD中,底面ABCD是直角梯形,∠DAB=90°,AD//BC,且BC⊥PB,△PAB是等边三角形,DA=AB=2,BC=AD,E是线段AB的中点.

(I)求证:PE⊥CD;

(II)求PC与平面PDE所成角的正弦值.

【答案】(1)见解析(2)PC与平面PDE所成角的正弦值为

【解析】试题分析】(1)先证明线面垂直,再运用线面垂直的性质定理分析推证;(2)建立空间向量,运用向量的坐标形式及向量的数量积公式分析求解:

解:(I)证明:因为BC⊥AB,BC⊥PB,

所以BC⊥侧面PAB,

PE平面PAB,所以BC⊥PE.

又因为△PAB是等边三角形,E是线段AB的中点,

所以PE⊥AB.

因为AD∩AB=A,

所以PE⊥平面ABCD.

而CD平面ABCD,所以PE⊥CD.

(II)以E为原点,建立如图所示的空间直角坐标系E—xyz.

则E(0,0,0),C(1,-1,0),D(2,1,0),P(0,0,

,,

=(x,y,z)为平面PDE的法向量.

令x=1可得

设PC与平面PDE所成的角为

所以PC与平面PDE所成角的正弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆),四点 中恰有三点在椭圆上.

1的方程;

2设直线不经过点且与相交于两点,若直线与直线的斜率之和为证明: 过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若任意,不等式恒成立,求实数的取值范围;

(2)求证:对任意 ,都有成立;

(3)对于给定的正数,有一个最大的正数,使得整个区间上,不等式恒成立,求出的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直线关于直线对称的直线为,直线与椭圆分别交于点,记直线的斜率为.

(Ⅰ)求的值;

(Ⅱ)当变化时,试问直线是否恒过定点? 若恒过定点,求出该定点坐标;若不恒过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1D与D1C所成的角为(
A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的偶函数,且当x>0时,函数f(x)的解析式为
(1)求当x<0时函数f(x)的解析式;
(2)用定义证明f(x)在(0,+∞)上的是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,边长为2的正方形ABCD中,
(1)点E是AB的中点,点F是BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于点A′.求证:A′D⊥EF.
(2)当BE=BF=BC时,求三棱锥A′﹣EFD体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(Ⅰ)当时,判断函数的零点个数;

(Ⅱ)若,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别过椭圆E: =1(a>b>0)左、右焦点F1、F2的动直线l1、l2相交于P点,与椭圆E分别交于A、B与C、D不同四点,直线OA、OB、OC、OD的斜率分别为k1、k2、k3、k4 , 且满足k1+k2=k3+k4 , 已知当l1与x轴重合时,|AB|=2 ,|CD|=
(1)求椭圆E的方程;
(2)是否存在定点M,N,使得|PM|+|PN|为定值?若存在,求出M、N点坐标,若不存在,说明理由.

查看答案和解析>>

同步练习册答案