A. | $\frac{1}{{\sqrt{2016}}}$ | B. | $\frac{1}{{\sqrt{2017}}}$ | C. | $\frac{1}{{\sqrt{2018}}}$ | D. | $\frac{1}{{\sqrt{2019}}}$ |
分析 $f(x)=\frac{x}{{\sqrt{1+{x^2}}}}$,数列{an}满足a1=f(1),an+1=f(an)(n∈N*),可得a1=$\frac{1}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,an+1=$\frac{{a}_{n}}{\sqrt{1+{a}_{n}^{2}}}$,因此$\frac{1}{{a}_{n+1}^{2}}$=$\frac{1}{{a}_{n}^{2}}$+1,即$\frac{1}{{a}_{n+1}^{2}}$-$\frac{1}{{a}_{n}^{2}}$=1,再利用等差数列的通项公式即可得出.
解答 解:∵$f(x)=\frac{x}{{\sqrt{1+{x^2}}}}$,数列{an}满足a1=f(1),an+1=f(an)(n∈N*),
∴a1=$\frac{1}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,an+1=$\frac{{a}_{n}}{\sqrt{1+{a}_{n}^{2}}}$,∴$\frac{1}{{a}_{n+1}^{2}}$=$\frac{1}{{a}_{n}^{2}}$+1,即$\frac{1}{{a}_{n+1}^{2}}$-$\frac{1}{{a}_{n}^{2}}$=1,
∴数列$\{\frac{1}{{a}_{n}^{2}}\}$是等差数列,首项为2,公差为1.
∴$\frac{1}{{a}_{n}^{2}}$=2+(n-1),
∴$\frac{1}{{a}_{2017}^{2}}$=2018,
a2017=$\frac{1}{\sqrt{2018}}$,
故选:C.
点评 本题考查了等差数列的通项公式、函数解析式、数列递推关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{27}$=1 | B. | $\frac{4{x}^{2}}{9}$+y2=1 | C. | $\frac{9{x}^{2}}{4}$+3y2=1 | D. | x2+$\frac{4{y}^{2}}{3}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $4+\sqrt{7}$ | B. | $4-\sqrt{3}$ | C. | $4+\sqrt{3}$ | D. | $4-\sqrt{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{2}{5}$$\overrightarrow{AB}$+$\frac{3}{5}$$\overrightarrow{AC}$ | B. | $\frac{3}{5}$$\overrightarrow{AB}$+$\frac{2}{5}$$\overrightarrow{AC}$ | C. | $\frac{3}{4}$$\overrightarrow{AB}$+$\frac{1}{4}$$\overrightarrow{AC}$ | D. | $\frac{2}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 16 | B. | 12 | C. | 10 | D. | 8 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com