精英家教网 > 高中数学 > 题目详情

【题目】为考察高中生的性别与喜欢数学课程之间的关系,在某学校高中生中随机抽取了250名学生,得到如图的二维条形图.

(1)根据二维条形图,完成下表:

合计

喜欢数学课程

不喜欢数学课程

合计


(2)对照如表,利用列联表的独立性检验估计,请问有多大把握认为“性别与喜欢数学有关系”?

【答案】
(1)100;60;160;50;40;90;150;100;250
(2)

解:

所以有60%的把握认为“性别与喜欢数学有关系”.


【解析】本题主要考查了独立性检验的应用,解决问题的关键是(1)根据所给的二维条形图看出喜欢数学课程和不喜欢数学课程的学生数,得到列联表;(2)把列联表中的数据代入求观测值的公式,求出这组数据的观测值,把观测值同临界值进行比较,得到有60%的把握认为“性别与喜欢数学有关系”

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某篮球队对篮球运动员的篮球技能进行统计研究,针对篮球运动员在投篮命中时,运动员到篮筐中心的水平距离这项指标,对某运动员进行了若干场次的统计,依据统计结果绘制如下频率分布直方图:

(I)依据频率分布直方图估算该运动员投篮命中时,他到篮筐中心的水平距离的中位数;

(II)在某场比赛中,考察他前4次投篮命中时到篮筐中心的水平距离的情况,并且规定:运动员投篮命中时,他到篮筐中心的水平距离不少于4米的记1分,否则扣掉1.用随机变量X表示第4次投篮后的总分,将频率视为概率,求X的分布列和均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正三棱柱的底边长为2, 分别为的中点.

(1)已知为线段上的点,且,求证:

(2)若二面角的余弦值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=( +a)x,a∈R
(1)求函数的定义域
(2)是否存在实数a,使得f(x)为偶函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx=ax2lnx

(Ⅰ)当a=时,判断fx)的单调性;(Ⅱ)设fx≤x3+4xlnx,在定义域内恒成立,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论的单调性

2)若有两个零点,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂有25周岁以上(含25周岁)工人300名,25周岁以 下工人200名.为研究工人的日平均生产量是否与年龄有关.现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“ 25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组: 分别加以统计,得到如图所示的频率分布直方图.

附表:

P(

0.100

0 .010

0.001

k

2.706

6.635

10.828

,(其中
(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的频率.
(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成 的列联表,并判断是否有 的把握认为“生产能手与工人所在的年龄组有关”?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

已知直线l的参数方程为(t为参数),曲线C的参数方程为(θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,点P的极坐标为

(Ⅰ)求直线l以及曲线C的极坐标方程;

(Ⅱ)设直线l与曲线C交于A,B两点,求PAB的面积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在(﹣1,1)上的奇函数f(x)是减函数满足f(1﹣a)+f(1﹣2a)<0,则a的取值范围是

查看答案和解析>>

同步练习册答案