精英家教网 > 高中数学 > 题目详情
给出一个参数方程

(1)如果分别以t,α为参数,则所给的参数方程表示的图象分别是什么?请分别把它们转化为普通方程.(α为参数时,设t>0,t为参数时,设α≠)

(2)求上述直线截上述曲线所得的弦长.

(3)根据上述求解过程总结出一个结论,并用基本语句编写一个算法计算弦长.

思路分析:本题综合考查参数方程,直线与曲线的位置关系以及算法等基本知识.首先根据参数方程的形式知:当t为参数时,参数方程表示直线,当α为参数表示圆,且直线恰好过圆的圆心,所以弦长就是圆的直径.根据所给的参数方程不难得到一般结论,用算法表示弦长只需根据数据求出圆的直径,所以只需使用顺序结构即可.

解:(1)以t为参数时,所给参数方程表示的图形是过点(2,5)且斜率为tanα的直线,化为普通方程是y-5=tanα(x-2);

以t为参数时,参数方程表示以(2,5)为圆心,半径为t的圆,化为普通方程是(x-2)2+(y-5)2=t2.

(2)上述直线恰好过圆的圆心,所以截圆所得弦长为圆的直径2t.

(3)根据上述计算过程可以总结出一般的结论为:对于一个参数方程

(α为参数时,设t>0,t为参数时,设α≠),如果分别以t,α为参数,则所给的参数方程表示的图象分别是一条直线和一个圆,且直线过圆的圆心,所以直线截圆所得弦长是圆的直径2t.

用基本语句写出表示弦长的算法如下:

INPUT“参数t(t>0)”;t,

d=2t,

PRINT“所给参数方程表示的直线被圆截得的弦长是”;d,

END.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.请在答题纸指定区域内 作答.解答应写出文字说明、证明过程或演算步骤.
A.如图,圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线AD,AD分别与直线l、圆交于点D、E.求∠DAC的度数与线段AE的长.
B.已知二阶矩阵A=
2a
b0
属于特征值-1的一个特征向量为
1
-3
,求矩阵A的逆矩阵.

C.已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合,曲线C的极坐标方程ρ2cos2θ+3ρ2sin2θ=3,直线l的参数方程为
x=-
3
t
y=1+t
(t为参数,t∈{R}).试求曲线C上点M到直线l的距离的最大值.
D.(1)设x是正数,求证:(1+x)(1+x2)(1+x3)≥8x3
(2)若x∈R,不等式(1+x)(1+x2)(1+x3)≥8x3是否仍然成立?如果仍成立,请给出证明;如果不成立,请举出一个使它不成立的x的值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省盐城中学高三(上)12月月考数学试卷(解析版) 题型:解答题

在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.请在答题纸指定区域内 作答.解答应写出文字说明、证明过程或演算步骤.
A.如图,圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线AD,AD分别与直线l、圆交于点D、E.求∠DAC的度数与线段AE的长.
B.已知二阶矩阵属于特征值-1的一个特征向量为,求矩阵A的逆矩阵.

C.已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合,曲线C的极坐标方程ρ2cos2θ+3ρ2sin2θ=3,直线l的参数方程为(t为参数,t∈{R}).试求曲线C上点M到直线l的距离的最大值.
D.(1)设x是正数,求证:(1+x)(1+x2)(1+x3)≥8x3
(2)若x∈R,不等式(1+x)(1+x2)(1+x3)≥8x3是否仍然成立?如果仍成立,请给出证明;如果不成立,请举出一个使它不成立的x的值.

查看答案和解析>>

同步练习册答案