精英家教网 > 高中数学 > 题目详情

如图,在三棱锥中,侧面与侧面均为等边三角形,中点.

 (Ⅰ)证明:平面

(Ⅱ)求二面角的余弦值.    (本题12分)

 

 

【答案】

 

证明:(Ⅰ)由题设,连结

为等腰直角三角形,所以,且

为等腰三角形,故,且

从而.所以为直角三角形,.又.所以平面

(Ⅱ)解:以为坐标原点,射线分别为轴、轴的正半轴,建立如图的空间直角坐标系.设,则

的中点  , 

.故等于二面角的平面角.

所以二面角的余弦值为

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年广东省中山市实验高中高三11月阶段考试文科数学试卷(解析版) 题型:解答题

如图,在三棱锥中,平面为侧棱上一点,它的正(主)视图和侧(左)视图如图所示.

(1)证明:平面

(2)在的平分线上确定一点,使得平面,并求此时的长.

 

查看答案和解析>>

科目:高中数学 来源:2014届江苏省高三开学检测理科数学试卷(解析版) 题型:解答题

如图,在四棱锥中,侧棱底面,底面为矩形,上一点,

(I)若的中点,求证平面

(II)求三棱锥的体积.

 

查看答案和解析>>

科目:高中数学 来源:2014届江苏省高三开学检测文科数学试卷(解析版) 题型:解答题

如图,在四棱锥中,侧棱底面,底面为矩形,上一点,

(I)若的中点,求证平面

(II)求三棱锥的体积.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年陕西省高三第六次适应性训练文科数学(解析版) 题型:解答题

如图,在三棱锥中,平面为侧棱上一点,它的正(主)视图和侧(左)视图如图所示.

(1)证明:平面

(2)求三棱锥的体积;

(3)在的平分线上确定一点,使得平面,并求此时的长.

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年北京市朝阳区高三上学期期末理科数学卷 题型:解答题

如图,在三棱锥中,,侧面为等边三角形,侧棱

(Ⅰ)求证:

(Ⅱ)求证:平面平面

(Ⅲ)求二面角的余弦值

 

查看答案和解析>>

同步练习册答案