精英家教网 > 高中数学 > 题目详情

 如图,直角三角形ABC的顶点坐标A)、B(0,),顶点Cx轴上,点P为线段OA的中点,设圆M是△ABC的外接圆,若DE是圆M的任意一条直径,试探究是否是定值?若是,求出定值;若不是,请说明理由.

 

 

 

 

 

 

 

【答案】

 解:==4 …2分

   ∴C(4,0)AC中点为M(1,0) 半径为3      

∴圆M的方程(⊿ABC的外接圆)为  …4分

设过圆心M的任意一直线为,    …5分

 

             …7分

设直线与圆的两个交点为D(),E()

=(),=(

·===…9分

=9,得代入上式

·=   …11分

当ED为横轴时,D(),E,=,=

·=         …12分

 

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,直角三角形ABC中,∠B=90°,AB=1,BC=
3
.点M,N分别在边AB和AC 上(M点和B点不重合),将△AMN沿MN翻折,△AMN变为△A′MN,使顶点A′落在边BC上(A′点和B点不重合).设∠AMN=θ.
(1)用θ表示∠BA′M和线段AM的长度,并写出θ的取值范围;
(2)求线段AN长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,直角三角形ABC中,∠B=90°,AB=1,BC=
3
.点M,N分别在边AB和AC上(M点和B点不重合),将△AMN沿MN翻折,△AMN变为△A'MN,使顶点A'落在边BC上(A'点和B点不重合).设∠AMN=θ.
(1)用θ表示线段AM的长度,并写出θ的取值范围;
(2)在△AMN中,若
AN
sin∠AMN
=
MA
sin∠ANM
,求线段A'N长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题为选做题,请在下列三题中任选一题作答)
A(《几何证明选讲》选做题).如图:直角三角形ABC中,∠B=90°,AB=4,以BC为直径的圆交边AC于点D,AD=2,则∠C的大小为
30°
30°

B(《坐标系与参数方程选讲》选做题).已知直线的极坐标方程为ρsin(θ+
π
4
)=
2
2
,则点A(2,
4
)到这条直线的距离为
2
2
2
2

C(不等式选讲)不等式|x-1|+|x|<3的解集是
(-1,2)
(-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•咸阳三模)(考生注意:请在下列三道试题中任选一题作答,如果多做,则按所做的第一题评阅记分)
A.(不等式选做题)若不等式|2a-1|≤ |x+
1
x
|
对一切非零实数x恒成立,则实数a的取值范围为
[-
1
2
3
2
]
[-
1
2
3
2
]

B.(几何证明选做题)如图,直角三角形ABC中,∠B=90°,AB=4,以BC为直径的圆交AC边于点D,AD=2,则∠C的大小为
30°
30°

C.(极坐标与参数方程选做题)若直线l的极坐标方程为ρcos(θ-
π
4
)=3
2
,圆C:
x=cosθ
y=sinθ
(θ为参数)上的点到直线l的距离为d,则d的最大值为
3
2
+1
3
2
+1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图:直角三角形ABC中,AC⊥BC,AB=2,D是AB的中点,M是CD上的动点.
(1)若M是CD的中点,求
MA
MB
的值;
(2)求(
MA
+
MB
)•
MC
的最小值.

查看答案和解析>>

同步练习册答案