精英家教网 > 高中数学 > 题目详情

【题目】已知某服装厂每天的固定成本是30000元,每天最大规模的生产量是.每生产一件服装,成本增加100元,生产服装的收入函数是,记分别为每天生产服装的利润和平均利润

1时,每天生产量为多少时,利润有最大值;

2每天生产量为多少时,平均利润有最大值,并求的最大值.

【答案】1时,有最大值2时,取得最大值为

【解析】

试题分析:1首先根据利润=收入-成本,而成本包含固定成本和每生产一件产品,成本增加100元,由此得到的解析式然后求二次函数取得最大值时的2平均利润利用导数确定函数的单调区间和极大值点并确定定义域内的单调性和最大值

试题解析:1依题意得利润

时,有最大值.

2依题意得

时,递增,

时,递减,

所以1时,时,取得最大值为

2时,时,取得最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)时,求函数的最小值

(2)若函数的最小值为,令,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】菜农定期使用低害杀虫农药对蔬菜进行喷洒, 以防止害虫的危害, 但采集上市时蔬菜仍存有少量的残留农药, 食用时需要用清水清洗干净, 下表是用清水(单位:千克) 清洗该蔬菜千克后, 蔬菜上残留的农药(单位:微克) 的统计表:

(1)在下面的坐标系中, 描出散点图, 并判断变量的相关性;

(2)若用解析式作为蔬菜农药残量与用水量的回归方程, ,计算平均值,完成以下表格(填在答题卡中) ,求出的回归方程.( 精确到)

(3)对于某种残留在蔬菜上的农药,当它的残留量低于微克时对人体无害, 为了放心食用该蔬菜,

估计需要用多少千克的清水清洗一千克蔬菜?(精确到,参考数据)

(附:线性回归方程中系数计算公式分别为;

, )

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一对父子参加一个亲子摸奖游戏,其规则如下:父亲在装有红色、白色球各两个的甲袋子里随机取两个球,儿子在装有红色、白色、黑色球各一个的乙袋子里随机取一个球,父子俩取球互相独立,两人各摸球一次合在一起称为一次摸奖,他们取出的三个球的颜色情况与他们获得的积分对应如下表:

所取球的情况

三个球均为红色

三个球均为不同色

恰有两球为红色

其他情况

所获得的积分

180

90

60

0

(1)求一次摸奖中,所取的三个球中恰有两个是红球的概率;

(2)设一次摸奖中,他们所获得的积分为的分布列及均值(数学期望)

(3)按照以上规则重复摸奖三次,求至少有两次获得积分为60的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)的图象与直线)相切,并且切点横坐标依次成公差为的等差数列,且的最大值为1.

(1),求函数的单调递增区间;

(2)将的图象向左平移个单位,得到函数的图象,若函数上有零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数,时,其中是自然对数的底数=2.71828.

的值;

时,方程有实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙二人用4张扑克牌分别是红桃2,红桃3,红桃4,方片4完游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.

1分别表示甲、乙抽到的牌的数字,写出甲乙二人抽到的牌的所有情况;

2若甲抽到红桃3,则乙抽出的牌的牌面数字比3大的概率是多少?

3甲乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,反之,则乙胜,你认为此游戏是否公平,说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 为正实数

1)当时,求曲线在点处的切线方程;

2求证:

3)若函数且只有零点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得数据整理后,画出频率分布直方图(如图所示),已知图中从左到右前三个小组的频率分别时0.1,0.3,0.4,第一小组的频数为5.

(1)求第四小组的频率?

(2)问参加这次测试的学生人数是多少?

(3)问在这次测试中,学生跳绳次数的中位数落在第几小组内?

查看答案和解析>>

同步练习册答案