精英家教网 > 高中数学 > 题目详情
20.已知等差数列{an}的前n项和为Sn,满足a1+a2=10,S5=40.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Tn

分析 (1)设等差数列{an}的公差为d,利用等差数列的通项公式及其前n项和公式即可得出.
(2)bn=$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{4}(\frac{1}{n+1}-\frac{1}{n+2})$.利用“裂项求和”即可得出.

解答 解:(1)设等差数列{an}的公差为d,∵a1+a2=10,S5=40.
∴$\left\{\begin{array}{l}{{a}_{1}(1+d)=10}\\{5{a}_{1}+\frac{5×4}{2}d=40}\end{array}\right.$,解得a1=4,d=2.
∴an=4+2(n-1)=2n+2.
(2)bn=$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{4}(\frac{1}{n+1}-\frac{1}{n+2})$.
∴数列{bn}的前n项和Tn=$\frac{1}{4}[(\frac{1}{2}-\frac{1}{3})$+$(\frac{1}{3}-\frac{1}{4})$+…+$(\frac{1}{n+1}-\frac{1}{n+2})]$
=$\frac{1}{4}(\frac{1}{2}-\frac{1}{n+2})$
=$\frac{n}{8(n+2)}$.

点评 本题考查了等差数列的通项公式及其前n项和公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.某工人生产合格零售的产量逐月增长,前5个月的产量如表所示:
月份x12345
合格零件y(件)50607080100
(I)若从这5组数据中抽出两组,求抽出的2组数据恰好是相邻的两个月数据的概率;
(Ⅱ)请根据所给5组数据,求出 y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;并根据线性回归方程预测该工人第6个月生产的合格零件的件数.
(附:回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=Acos(ωx+$\frac{π}{4}$ω)(A>0)在(0,$\frac{π}{8}$)上是减函数,求ω的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某办公室刚装修一新,放些植物花草可以清除异味,公司提供绿萝、文竹、碧玉、芦荟4种植物供员工选择,每个员工只能任意选择1种,则员工甲和乙选择的植物不同的概率为(  )
A.$\frac{7}{16}$B.$\frac{9}{16}$C.$\frac{3}{4}$D.$\frac{13}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.直线l经过直线3x+y-1=0与直线x-5y-11=0的交点,且与直线x+4y=0垂直.
(1)求直线l的方程;
(2)求直线l被圆:x2+(y-11)2=25所截得的弦长|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.△ABC中,满足:$\overrightarrow{AB}$⊥$\overrightarrow{AC}$,M是BC的中点.
(1)若|$\overrightarrow{AB}$|=|$\overrightarrow{AC}$|,求向量$\overrightarrow{AB}$+2$\overrightarrow{AC}$与向量2$\overrightarrow{AB}$+$\overrightarrow{AC}$的夹角的余弦值.
(2)若点P是边BC上一点,|$\overrightarrow{AP}$|=2,且$\overrightarrow{AP}$•$\overrightarrow{AC}$=2,$\overrightarrow{AP}$•$\overrightarrow{AB}$=1,求|$\overrightarrow{AB}$+$\overrightarrow{AC}$+$\overrightarrow{AP}$|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=lg(2-x)定义域为(-∞,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知椭圆的焦点为(-1,0)和(1,0).点P(2,0)在椭圆上,则椭圆的方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}的通项公式为an=pn+$\frac{q}{n}$,且a2=$\frac{3}{2}$,a4=$\frac{3}{2}$,则a8=$\frac{9}{4}$.

查看答案和解析>>

同步练习册答案