精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
x2-6(x≥
3
或x≤-
3
)
-x2(-
3
<x<
3
)
,设0<m<n,且f(m)=f(n),则mn2的最大值为
 
考点:函数的值
专题:函数的性质及应用
分析:讨论m的范围,得到关于m,n的等式,然后将mn2值化为一个变量的形式,借助于求导求它的最大值.
解答: 解:①当0<m<n<
3
时,f(m)=f(n),得到m2=n2,得到m,n异号,所以不满足题意;
②当0<m<
3
<n时,由f(m)=f(n),得到-m2=n2-6,得到m2+n2=6,mn2=m(6-m2)=-m3+6m,
设y=-m3+6m,令y′=-3m2+6=0,解得m=±
2
,∵m>0,∴m=
2

当m∈(0,
2
)时,y=-m3+6m时增函数,m∈(
2
3
)时是减函数,
∴函数y=-m3+6m的最大值为m=
2
时y=4
2

∴mn2的最大值为4
2

故答案为:4
2
点评:本题考查了分段函数解析式的运用已经利用导数求函数的最值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直角坐标系xOy中,动点P到两点F1(-1,0),F2(1,0)的距离之和为4,设P点轨迹为C.
(Ⅰ)求C的方程;
(Ⅱ)曲线C上不同的两点A(x1,y1)、B(x2,y2)满足:
AF2
F2B
,x1+x2=
1
2
,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=g(x)-t,若对?t∈R,f(x)恒有两个零点,则函数g(x)可为(  )
A、g(x)=2x+2-x
B、g(x)=2x-2-x
C、g(x)=log2x+
1
log2x
D、g(x)=log2x-
1
log2x

查看答案和解析>>

科目:高中数学 来源: 题型:

等腰直角三角形ACB中∠C=90°,CA=CB=a,点P在AB上,且
.
AP
.
AB
(0≤λ≤1),则
.
CA
.
CP
的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,a2=3,且an+1=an+2an-1(n≥2,n∈N*).
(Ⅰ)设bn=an+1+λan,是否存在实数λ,使数列{bn}为等比数列.若存在,求出λ的值,若不存在,请说明理由;
(Ⅱ)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

“a=2”是“?x∈(0,+∞),ax+
1
8x
≥1”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn为数列{an}的前n项的和,满足Sn=
t-tan
1-t
(n∈N*),其中t为常数,且t≠0,t≠1.
(1)求通项an
(2)若t=-
3
2
,设bn=(n+2)•an•ln|an|问数列{bn}的最大项是它的第几项?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x+m(m∈R),且它的图象经过点(2,5).
(1)求实数m的值.
(2)求函数f(x)的定义域和值域,并画出函数y=f(x)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:关于x的不等式ax>1,(a>0,a≠1)的解集是{x|x<0},命题q:函数y=lg(x2-x+a)的定义域为R,若p∨q为真p∧q为假,求实数a的取值范围.

查看答案和解析>>

同步练习册答案