精英家教网 > 高中数学 > 题目详情

(本小题满分12分)某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中为常数,已知销售价格为5元/千克时,每日可售出该商品11千克。

(1)求的值;

(2)若该商品的成本为3元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大。

 

【答案】

(1)

(2)当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大。

【解析】本试题主要是考查了函数在实际生活中的运用。利用函数求解最值问题。

(1)根据已知的日销售量与价格的关系可知得到,销售价格为5元/千克时,每日可售出该商品11千克,代入关系式中解得a的值。

(2)利润等于日销售利润乘以日销售量,那么得到利润函数

然后运用导数的思想求解得到最值。

解:(1)因为x=5时,y=11,所以

(2)由(I)可知,该商品每日的销售量

所以商场每日销售该商品所获得的利润

从而,

于是,当x变化时,的变化情况如下表:

(3,4)

4

(4,6)

+

0

-

单调递增

极大值42

单调递减

由上表可得,x=4是函数在区间(3,6)内的极大值点,也是最大值点;

所以,当x=4时,函数取得最大值,且最大值等于42。

答:当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案