精英家教网 > 高中数学 > 题目详情
3.过定点A(0,a)在x轴上截得弦长为2a的动圆圆心的轨迹方程是(  )
A.x2+(y-a)2=a2B.y2=2axC.(x-a)2+y2=a2D.x2=2ay

分析 设出动圆圆心坐标,由动圆C经过点(0,a)求出圆的半径,利用圆在x轴上截得弦长为2a,列式整理即可得到动圆圆心的轨迹方程.

解答 解:设圆C的圆心坐标为(x,y),则其半径r=$\sqrt{{x}^{2}+(y-a)^{2}}$.
依题意,r2-y2=a2,即x2+(y-a)2-y2=a2
整理得曲线E的方程为x2=2ay.
故选:D.

点评 本题考查轨迹方程,考查直线与圆的位置关系,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.为了得到函数y=sin3x+cos3x图象,可将函数$y=\sqrt{2}sin3x$图象(  )
A.向左平移$\frac{π}{12}$个单位B.向右平移$\frac{π}{12}$个单位
C.向右平移$\frac{π}{4}$个单位D.向左平移$\frac{π}{4}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{bn}的前n项和为Sn,b1=1,且点(n.Sn+n+2)在函数y=2x+1的图象上,若数列{an}满足a1=1,an=bn($\frac{1}{{b}_{1}}$+$\frac{1}{{b}_{2}}$+…+$\frac{1}{{b}_{n-1}}$)(n≥2,n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)(i)求证:$\frac{{a}_{n}+1}{{a}_{n+1}}$=$\frac{{b}_{n}}{{b}_{n+1}}$(n≥2,n∈N*);
(ii)求证:(1+$\frac{1}{{a}_{1}}$)(1+$\frac{1}{{a}_{2}}$)(1+$\frac{1}{{a}_{3}}$)…(1+$\frac{1}{{a}_{n}}$)<$\frac{10}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.作已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点为F1,F2,离心率为$\frac{\sqrt{2}}{2}$,过F2的直线l交C于M,N两点,若△MF1N的周长为8.
(1)求椭圆C的标准方程;
(2)设O为原点,若点A在直线y=2上,点B在椭圆C上,且OA⊥OB,求线段AB长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知点P在曲线y=x2+1上,若曲线y=x2+1在点P处的切线与曲线y=-2x2-1相切,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知顶点在原点,焦点在y轴上的抛物线被直线x-2y-1=0截得的弦长为$\sqrt{15}$,求此抛物线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知角α终边与单位圆的交点坐标为(-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),那么sinα=$\frac{1}{2}$,cosα=-.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下表是某公司1-8月份的销售额,通过回归分析得出回归方程为$\widehat{y}$=0.96x+4.54,预测9月份的销售额是(  )万元.
月份12345678
万元5688.510.511.58.513
A.13B.13.18C.13.5D.14

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知点F1(-2$\sqrt{2}$,0),F2(2$\sqrt{2}$,0),动点P为曲线C上任意点且满足|PF1|+|PF2|=4$\sqrt{3}$.
(1)求曲线C的方程;
(2)若斜率为1的直线l与曲线C交于A、B两点,且P(-3,2)在线段AB的垂直平分线上,求△PAB的面积.

查看答案和解析>>

同步练习册答案