精英家教网 > 高中数学 > 题目详情
若圆x2+y2=r2(r>0)上仅有4个点到直线x-y-2=0的距离为1,则实数r的取值范围是(  )
A.(0,
2
-1)
B.(
2
-1,
2
+1)
C.(
2
+1,+∞)
D.(0,
2
+1)
作出到直线x-y-2=0的距离为1的点的轨迹,得到与直线x-y-2=0平行,
且到直线x-y-2=0的距离等于1的两条直线,
∵圆x2+y2=r2的圆心为原点,
原点到直线x-y-2=0的距离为d=
|0-0-2|
2
=
2

∴两条平行线中与圆心O距离较远的一条到原点的距离为d'=
2
+1

又∵圆x2+y2=r2(r>0)上有4个点到直线x-y-2=0的距离为1,
∴两条平行线与圆x2+y2=r2有4个公共点,即它们都与圆x2+y2=r2相交.
由此可得圆的半径r>d',
即r>
2
+1
,实数r的取值范围是(
2
+1,+∞)

故选:C
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知圆心在第二象限,半径为2
2
的圆C与直线y=x相切于坐标原点O,过点D(-3,0)作直线l与圆C相交于A,B两点,且|DA|=|DB|.
(1)求圆C的方程;
(2)求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点M(3,1),直线ax-y+4=0及圆(x-1)2+(y-2)2=4.
(1)求过M点的圆的切线方程;
(2)若直线ax-y+4=0与圆相切,求a的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
3
2
,点(1,-
3
2
)
为椭圆上的一点,O为坐标原.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知直线l:y=kx+m为圆x2+y2=
4
5
的切线,直线l交椭圆于A、B两点,求证:∠AOB为直角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆C:(x-1)2+(y+2)2=9,直线l:(m+1)x-y-2m-3=0(m∈R)
(1)求证:无论m取什么实数,直线恒与圆交于两点;
(2)求直线l被圆C所截得的弦长最小时的直线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知圆C1:x2+y2+D1x+E1y-3=0与圆C2:x2+y2+D2x+E2y-3=0都经过点A(2,-1),则同时经过点(D1,E1)和点(D2,E2)的直线方程为(  )
A.2x-y+2=0B.x-y-2=0C.x-y+2=0D.2x+y-2=0

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆A:(x-2)2+y2=1,曲线B:6-x=
4-y2
和直线l:y=x.
(1)若点M、N、P分别是圆A、曲线B和直线l上的任意点,求|PM|+|PN|的最小值;
(2)已知动直线m:(a-2)x+by-2a+3=0(a,b∈R)与圆A相交于S、T两点,又点Q的坐标是(a,b).
①判断点Q与圆A的位置关系;
②求证:当实数a,b的值发生变化时,经过S、T、Q三点的圆总过定点,并求出这个定点坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线l:y=2x+b将圆x2+y2-2x-4y+4=0的面积平分,则b=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知⊙C1:x2+(y+5)2=5,点A(1,-3)
(Ⅰ)求过点A与⊙C1相切的直线l的方程;
(Ⅱ)设⊙C2为⊙C1关于直线l对称的圆,则在x轴上是否存在点P,使得P到两圆的切线长之比为
2
?荐存在,求出点P的坐标;若不存在,试说明理由.

查看答案和解析>>

同步练习册答案