精英家教网 > 高中数学 > 题目详情

【题目】某小区内有一块以为圆心半径为20米的圆形区域.广场,为丰富市民的业余文化生活,现提出如下设计方案:如图,在圆形区域内搭建露天舞台,舞台为扇形区域,其中两个端点分别在圆周上;观众席为梯形内且在圆外的区域,其中,且在点的同侧.为保证视听效果,要求观众席内每一个观众到舞台处的距离都不超过60米.设.

(1)求的长(用表示);

(2)对于任意,上述设计方案是否均能符合要求?

【答案】(1) (2)能符合要求

【解析】

(1)利用垂径定理,可以得到一个直角三角形,可以求出的长;

(2)根据垂线段最短这个性质,可以得到点处的观众离点最远,利用余弦定理求出的长,求出它的最大值,与60进行比较,得出结论。

解:(1)过点垂直于,垂足为

在直角三角形中,

所以,因此

(2)由图可知,点处的观众离点最远

在三角形中,由余弦定理可知

因为,所以当,即时,

=800+1600,

8001600

所以

所以观众席内每一个观众到舞台处的距离都不超过米.

故对于任意,上述设计方案均能符合要求.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为Ⅰ)求曲线的直角坐标方程,并指出其表示何种曲线;(Ⅱ)设直线与曲线交于两点,若点的直角坐标为,试求当时,的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥的外接球的表面积为25π,该三棱锥的三视图如图所示,三个视图的外轮廓都是直角三角形,则其侧视图面积的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在独立性检验中,统计量有三个临界值:2.706,3.841和6.635.当时,有90%的把握说明两个事件有关;当时,有95%的把握说明两个事件有关,当时,有99%的把握说明两个事件有关,当时,认为两个事件无关.在一项打鼾与心脏病的调查中,共调查了2000人,经计算.根据这一数据分析,认为打鼾与患心脏病之间( )

A. 有95%的把握认为两者有关 B. 约95%的打鼾者患心脏病

C. 有99%的把握认为两者有关 D. 约99%的打鼾者患心脏病

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C: (a>0,b>0)的左、右焦点分别为F1 , F2 , 点M与双曲线C的焦点不重合,点M关于F1 , F2的对称点分别为A,B,线段MN的中点在双曲线的右支上,若|AN|﹣|BN|=12,则a=(
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学高等数学老师这学期分别用两种不同的教学方式试验甲、乙两个大一新班(人数均为60人,入学数学平均分数和优秀率都相同;勤奋程度和自觉性都一样)。现随机抽取甲、乙两班各20名的高等数学期末考试成绩,得到茎叶图:

)依茎叶图判断哪个班的平均分高?

)现班高等数学成绩不得低于80分的同学中随机抽取两名同学,求成绩为86分的同学至少有一个被抽中的概率;

)学校规定:成绩不低于85分的为优秀,请填写下面的列联表,并判断能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?

甲班

乙班

合计

优秀

不优秀

合计

下面临界值表仅供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出以下结论,其中正确结论的个数为( )

①函数的零点为,则函数的图象经过点时,函数值一定变号.

②相邻两个零点之间的所有函数值保持同号.

③函数在区间上连续,若满足,则方程在区间上一定有实根.

④“二分法”对连续不断的函数的所有零点都有效.

A. 0个B. 1个C. 2个D. 3个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,求处的切线方程;

(2)若在区间上恰有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年10月19日,由中国工信部、江西省政府联合主办的世界VR(虚拟现实)产业大会在南昌开幕,南昌在红谷滩新区建立VR特色小镇项目.现某厂商抓住商机在去年用450万元购进一批VR设备,经调试后今年投入使用,计划第一年维修、保养费用22万元,从第二年开始,每年所需维修、保养费用比上一年增加4万元,该设备使用后,每年的总收入为180万元,设使用x年后设备的盈利额为y万元.

(1)写出yx之间的函数关系式;

(2)使用若干年后,当年平均盈利额达到最大值时,求该厂商的盈利额.

查看答案和解析>>

同步练习册答案