精英家教网 > 高中数学 > 题目详情
20.抛物线y2=16x的焦点到双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的渐近线的距离是(  )
A.1B.$\sqrt{3}$C.2D.2$\sqrt{3}$

分析 确定抛物线的焦点位置,进而可确定抛物线的焦点坐标;求出双曲线渐近线方程,利用点到直线的距离公式可得结论.

解答 解:抛物线y2=16x的焦点F的坐标为(4,0);双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的一条渐近线方程为$\sqrt{3}$x-y=0,
∴抛物线y2=16x的焦点到双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的一条渐近线的距离为$\frac{4\sqrt{3}}{\sqrt{3+1}}$=2$\sqrt{3}$,
故选:D.

点评 本题考查双曲线、抛物线的标准方程,以及双曲线、抛物线的简单性质,考查点到直线的距离公式的应用,求出焦点坐标和一条渐近线方程,是解题的突破口.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知奇函数f(x)满足$f(x+\frac{3}{2})=-f(x)$,且当x∈(0,2)时,f(x)=2x,则f(5)=(  )
A.32B.2C.$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知△ABC是边长为2的等边三角形,则$\overrightarrow{AB}$•$\overrightarrow{BC}$=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.顶点哎坐标原点,始边为x轴正半轴的角α的终边与单位圆(圆心为原点,半径为1的圆)的交点坐标为$({x,\frac{3}{5}})$,则cscα=$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若x∈R,则(1-|x|)(1+x)>0的解集是(  )
A.{x|0≤x<1}B.{x|x<0且x≠-1}C.{x|-1<x<1}D.{x|x<1且x≠-1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.△ABC中的内角A,B,C的对边分别为a,b,c,若b=4$\sqrt{5}$,c=5,B=2C,点D为边BC上一点,且BD=6,则△ADC的面积位10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.为了得到函数$y=2sin({3x+\frac{π}{6}})$的图象,只需把y=2sinx的图象上所有的点(  )
A.向右平移$\frac{π}{6}$,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)
B.向左平移$\frac{π}{6}$,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)
C.向右平移$\frac{π}{6}$,再把所得各点的横坐标伸长到原来的$\frac{1}{3}$倍(纵坐标不变)
D.向左平移$\frac{π}{6}$,再把所得各点的横坐标伸长到原来的$\frac{1}{3}$倍(纵坐标不变)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,四棱锥P-ABCD中,AD∥BC,$AB=BC=\frac{1}{2}AD$,E,F,H分别为线段AD,PC,CD的中点,AC与BE交于O点,G是线段OF上一点.
(1)求证:AP∥平面BEF;
(2)求证:GH∥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.一个几何体的三视图如图所示,其中俯视图是一个腰长为2的等腰直角三角形,侧视图是一个直角边长为1的直角三角形,则该几何体外接球的体积是(  )
A.36πB.C.$\frac{9}{2}π$D.$\frac{27}{5}π$

查看答案和解析>>

同步练习册答案