A. | 1 | B. | $\sqrt{3}$ | C. | 2 | D. | 2$\sqrt{3}$ |
分析 确定抛物线的焦点位置,进而可确定抛物线的焦点坐标;求出双曲线渐近线方程,利用点到直线的距离公式可得结论.
解答 解:抛物线y2=16x的焦点F的坐标为(4,0);双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的一条渐近线方程为$\sqrt{3}$x-y=0,
∴抛物线y2=16x的焦点到双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的一条渐近线的距离为$\frac{4\sqrt{3}}{\sqrt{3+1}}$=2$\sqrt{3}$,
故选:D.
点评 本题考查双曲线、抛物线的标准方程,以及双曲线、抛物线的简单性质,考查点到直线的距离公式的应用,求出焦点坐标和一条渐近线方程,是解题的突破口.
科目:高中数学 来源: 题型:选择题
A. | 32 | B. | 2 | C. | $\frac{1}{2}$ | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {x|0≤x<1} | B. | {x|x<0且x≠-1} | C. | {x|-1<x<1} | D. | {x|x<1且x≠-1} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 向右平移$\frac{π}{6}$,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) | |
B. | 向左平移$\frac{π}{6}$,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) | |
C. | 向右平移$\frac{π}{6}$,再把所得各点的横坐标伸长到原来的$\frac{1}{3}$倍(纵坐标不变) | |
D. | 向左平移$\frac{π}{6}$,再把所得各点的横坐标伸长到原来的$\frac{1}{3}$倍(纵坐标不变) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 36π | B. | 9π | C. | $\frac{9}{2}π$ | D. | $\frac{27}{5}π$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com