精英家教网 > 高中数学 > 题目详情

【题目】已知函数).

(1)若时, 不单调,求的取值范围;

(2)设,若 时, 时, 有最小值,求最小值的取值范围.

【答案】(1);(2).

【解析】试题分析:

1)根据不单调可得导函数在区间上有解,然后通过分离参数的方法将问题转化为求上的取值范围的问题解决,然后利用基本不等式可得所求.(2)由题意可得,利用导数可得上单调递增,又,故可得上存在零点,从而可得然后再利用导数求出函数的值域即可得到所求.

试题解析

(1)∵

,

时, 不单调,

∴方程上有解,

上有解,

,(当且仅当时等号才成立,故此处无等号

实数的取值范围为

(2)由题意得

.

,则

单调递增,

∴存在,使得.

且当时, 单调递减,

时, 单调递增,

.

上单调递减,

.

最小值的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某商场举行抽奖活动,从装有编号0123四个球的抽奖箱中,每次取出后放回,连续取两次,取出的两个小球号码相加之和等于6中特等奖,等于5中一等奖,等于4中二等奖,等于3中三等奖.

1)求中二等奖的概率;

2)求未中奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)请结合所给表格,在所给的坐标系中作出函数一个周期内的简图;

(2)求函数的单调递增区间;

(3)求的最大值和最小值及相应的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司制定了一个激励销售人员的奖励方案:当销售利润不超过10万元时,按销售利润的15%进行奖励;当销售利润超过10万元时,前10万元按销售利润的15%进行奖励,若超出部分为t万元,则超出部分按进行奖励.记奖金为y(单位:万元),销售利润为x(单位:万元).

1)写出奖金y关于销售利润x的关系式;

2)如果业务员小王获得3.5万元的奖金,那么他的销售利润是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某营养协会对全市18岁男生的身高作调查,统计显示全市18岁男生的身高服从正态分布,现某校随机抽取了100名18岁男生的身高分析,结果这100名学生的身高全部介于之间.现将结果按如下方式分为6组,第一组,第二组,…,第六组,得到如图所示的频率分布直方图.

(1)若全市18岁男生共有人,试估计该市身高在以上的18岁男生人数;

(2)求的值,并计算该校18岁男生的身高的中位数(精确到小数点后三位);

(3)若身高以上的学生校服需要单独定制,现从这100名学生中身高在以上的同学中任意抽取3人,这三人中校服需要单独定制的人数记为,求的分布列和期望.

附: ,则

,则

,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(1)证明:存在唯一实数,使得直线和曲线相切;

(2)若不等式有且只有两个整数解,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,恒有成立,求实数的取值范围;

(2)若函数有两个极值点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C1:(x1)2+(y3)2=9和圆C2x2y24x2y11=0.

1)求两圆公共弦所在直线的方程;

2)求直线过点C(3,-5),且与公共弦垂直的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在等腰直角三角形中,分别是上的点,的中点沿折起,得到如图2所示的四棱椎,其中

证明:平面

求二面角的平面角的余弦值.

查看答案和解析>>

同步练习册答案