精英家教网 > 高中数学 > 题目详情
已知f(x)为偶函数,且当1<x<2时,f(x)=x-1,试求当-2<x<-1时,f(x)的表达式.
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:设-2<x<-1,则1<-x<2,代入已知的函数解析式,再由偶函数的性质:f(x)=f(-x)进行转化得到答案.
解答: 解:设-2<x<-1,则1<-x<2,
因为当1<x<2时,所以f(-x)=-x-1,
又f(x)为偶函数,所以f(x)=f(-x)=-x-1,
故当-2<x<-1时,f(x)=-x-1.
点评:本题考查利用函数的奇偶性求出函数f(x)的表达式,以及转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知tan(π+a)=2,计算
sinα+2cosα
sinα-cosα

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=sin2ωπx(ω>0)的图象在区间[0,
1
2
]上至少有两个最高点和两个最低点,则ω的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设x1,x2是方程ax2+(b-1)x+1=0(a>0)的两个实根.
(1)若0<x1<2,x2-x1=2,求证:b<
1
4

(2)若x2-x1=2,x∈(x1,x2)时,求函数f(x)=-ax2-(b-1)x-1+2(x2-x)最大h(a)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的偶函数,且f(x)满足f(x+π)=f(x),当[0,
π
2
)时,f(x)=tanx,则f(
3
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图△ABCD和△BCD都是边长为2的正三角形,且二面角A-BC-D的大小为60°,则点的D到平面△ABC的距离为为(  )
A、2
B、
3
2
C、
3
2
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)上一点C,过双曲线中心的直线交双曲线于A,B两点,记直线AC,BC的斜率分别为k1,k2,当
2
k1k2
+ln|k1|+ln|k2|
最小时,双曲线离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(ax-
1
x
10的展开式中x4项的系数为210,则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别是角A,B,C的对边,若a2-c2=2b,且sinB=6cosAsinC,则b的值为
 

查看答案和解析>>

同步练习册答案