精英家教网 > 高中数学 > 题目详情
4.已知点B(3,-2),$\overrightarrow{AB}$=(-2,4),求点A的坐标.

分析 设出点A(x,y),用坐标表示向量$\overrightarrow{AB}$,利用向量相等列出方程求出点A的坐标.

解答 解:设点A(x,y),∵点B(3,-2),
∴$\overrightarrow{AB}$=(3-x,-2-y)=(-2,4),
即$\left\{\begin{array}{l}{3-x=-2}\\{-2-y=4}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=5}\\{y=-6}\end{array}\right.$,
∴点A的坐标为A(5,-6).

点评 本题考查了利用向量的坐标表示以及列方程的方法求点的坐标的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.某警官处理一起撞人肇事逃逸案件,涉案现场的A、B、C三名嫌疑人被当场询问.该警官认为.说实话的不是肇事者,说谎话的肯定就是肇事者.结果也证明警官的这个想法是正确的.警官先问A:“你是怎样撞到人后逃逸的?”A回答了警官的问题:“叽里呱啦,叽里呱啦…”A讲的是某地的方言,警官根本听不懂他说的是什么.警官又问B和C:“刚才A是怎样回答我的问题的?”B说:“A说,他不是肇事者.”C说:“A承认自己就是肇事者.”B和C说的话警官是能听懂的.听了B和C的话之后,这位警官马上断定:C是肇事者.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.直线y=x-2被圆(x-2)2+(y+1)2=1所截弦长为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知集合M={x||x+1|≤1},P={y|y=4x-a•2x-1+1,x∈M}都是全集U=R的子集,其中$\frac{3}{4}$<a≤1,求∁u(M∪P)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,已知AB为⊙O的直径,CD是弦,AB⊥CD于点E,OF⊥AC于点F.
(1)求证:OF∥BC;
(2)若EB=5cm,CD=10$\sqrt{3}$cm,求OE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.向量$\overrightarrow{a}$,$\overrightarrow{b}$的坐标分别为(2,-1),(-1,3),则$\overrightarrow{a}$+$\overrightarrow{b}$的坐标为(1,2),2$\overrightarrow{a}$+3$\overrightarrow{b}$的坐标为(1,7).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知{an}是一个首项为a1,公差为d的等差数列.试求:Sn=a1${C}_{n}^{0}$+a2${C}_{n}^{1}$+…+an+1${C}_{n}^{n}$(n≥1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{1}{2}$sin2x+cosx,x∈R.
(1)证明:f(x)的最小正周期为2π;
(2)若关于x的方程f(x)-a=0在区间[$\frac{π}{6}$,π]上有两个不同的实数解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系中,已知点M(0,-1),N(0,1),动点P满足PM=$\sqrt{2}$PN.
(1)求点P的轨迹C1的方程,并说明是什么曲线
(2)二次函数f(x)=x2+2x-3的图象与两坐标轴交于三点,过这三点的圆记为C2,求证C1、C2有两个公共点,并求出这两个公共点间距离.

查看答案和解析>>

同步练习册答案