【题目】2014年非洲爆发了埃博拉病毒疫情,在疫情结束后,当地防疫部门做了一项回访调查,得到如下结果,
患病 | 不患病 | |
有良好卫生习惯 | 20 | 180 |
无良好卫生习惯 | 80 | 220 |
(1)结合上面列联表,是否有的把握认为是否患病与卫生习惯有关?
(2)现从有良好卫生习惯且不患病的180人中抽取,,,,共5人,再从这5人中选两人给市民做健康专题报告,求,至少有一人被选中的概率.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
科目:高中数学 来源: 题型:
【题目】已知,如图四棱锥中,底面为菱形,,,平面,E,M分别是BC,PD中点,点F在棱PC上移动.
(1)证明无论点F在PC上如何移动,都有平面平面;
(2)当直线AF与平面PCD所成的角最大时,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数集,其中,且,若对,与两数中至少有一个属于,则称数集具有性质.
(1)分别判断数集与数集是否具有性质,说明理由;
(2)已知数集具有性质,判断数列,,…,是否为等差数列,若是等差数列,请证明;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】点F2是双曲线的右焦点,动点A在双曲线左支上,直线l1:tx﹣y+t﹣2=0与直线l2:x+ty+2t﹣1=0的交点为B,则|AB|+|AF2|的最小值为( )
A.8B.C.9D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在党中央的英明领导下,在全国人民的坚定支持下,中国的抗击“新型冠状肺炎”战役取得了阶段性胜利,现在摆在我们大家面前的是有序且安全的复工复产.某商场为了提振顾客的消费信心,对某中型商品实行分期付款方式销售,根据以往资料统计,顾客购买该商品选择分期付款的期数ξ的分布列为
其中0<a<1,0<b<1.
(1)求购买该商品的3位顾客中,恰有1位选择分4期付款的概率;
(2)商场销售一件该商品,若顾客选择分4期付款,则商场获得的利润为2000元;若顾客选择分5期付款,则商场获得的利润为2500元;若顾客选择分6期付款,则商场获得的利润为3000元,假设该商场销售两件该商品所获得的利润为X(单位:元),
(i)设X=5500时的概率为m,求当m取最大值时,利润X的分布列和数学期望;
(ii)设某数列{xn}满足x1=0.4,xn=a,2xn+1=b,若a<0.25,求n的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】红铃虫(Pectinophora gossypiella)是棉花的主要害虫之一,其产卵数与温度有关.现收集到一只红铃虫的产卵数y(个)和温度x(℃)的8组观测数据,制成图1所示的散点图.现用两种模型①,②分别进行拟合,由此得到相应的回归方程并进行残差分析,进一步得到图2所示的残差图.
根据收集到的数据,计算得到如下值:
25 | 2.89 | 646 | 168 | 422688 | 48.48 | 70308 |
表中;;;;
(1)根据残差图,比较模型①、②的拟合效果,应选择哪个模型?并说明理由;
(2)根据(1)中所选择的模型,求出y关于x的回归方程(系数精确到0.01),并求温度为34℃时,产卵数y的预报值.
(参考数据:,,,)
附:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:+=1(a>b>0)的两焦点之间的距离为2,两条准线间的距离为8,直线l:y=k(x-m)(m∈R)与椭圆交于P,Q两点.
(1) 求椭圆C的方程;
(2) 设椭圆的左顶点为A,记直线AP,AQ的斜率分别为k1,k2.①若m=0,求k1k2的值;②若k1k2=-,求实数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班级共有50名同学(男女各占一半),为弘扬传统文化,班委组织了“古诗词男女对抗赛”,将同学随机分成25组,每组男女同学各一名,每名同学均回答同样的五个不同问题,答对一题得一分,答错或不答得零分,总分5分为满分.最后25组同学得分如下表:
组别号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
男同学得分 | 5 | 4 | 5 | 5 | 4 | 5 | 5 | 4 | 4 | 4 | 5 | 5 | 4 |
女同学得分 | 4 | 3 | 4 | 5 | 5 | 5 | 4 | 5 | 5 | 5 | 5 | 3 | 5 |
分差 | 1 | 1 | 1 | 0 | -1 | 0 | 1 | -1 | -1 | -1 | 0 | 2 | -1 |
组别号 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | |
男同学得分 | 4 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 4 | 3 | 3 | |
女同学得分 | 5 | 3 | 4 | 5 | 4 | 3 | 5 | 5 | 3 | 4 | 5 | 5 | |
分差 | -1 | 0 | 0 | -1 | 0 | 1 | 0 | 0 | 2 | 0 | -2 | -2 |
(I)完成列联表,并判断是否有90%的把握认为“该次对抗赛是否得满分”与“同学性别”有关;
(Ⅱ)某课题研究小组假设各组男女同学分差服从正态分布,首先根据前20组男女同学的分差确定和,然后根据后面5组同学的分差来检验模型,检验方法是:记后面5组男女同学分差与的差的绝对值分别为,若出现下列两种情况之一,则不接受该模型,否则接受该模型.①存在;②记满足的i的个数为k,在服从正态分布的总体(个体数无穷大)中任意取5个个体,其中落在区间内的个体数大于或等于k的概率为P,.
试问该课题研究小组是否会接受该模型.
0.10 | 0.05 | 0.010 | |
2.706 | 3.841 | 6.635 |
参考公式和数据:
,;若,有,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】很多关于整数规律的猜想都通俗易懂,吸引了大量的数学家和数学爱好者,有些猜想已经被数学家证明,如“费马大定理”,但大多猜想还未被证明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的内容是:对于每一个正整数,如果它是奇数,则将它乘以再加1;如果它是偶数,则将它除以;如此循环,最终都能够得到.下图为研究“角谷猜想”的一个程序框图.若输入的值为,则输出i的值为( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com