精英家教网 > 高中数学 > 题目详情
20.已知f(x)=|x-a|+|x-3|.
(1)当a=1时,求f(x)的最小值;
(2)若不等式f(x)≤3的解集非空,求a的取值范围.

分析 (1)当a=1时,f(x)=|x-1|+|x-3|≥|x-1-x+3|=2,即可求f(x)的最小值;
(2)x∈R时,恒有|x-a|+|x-3|≥|(x-a)-(x-3)|=|3-a|,不等式f(x)≤3的解集非空,|3-a|≤3,即可求a的取值范围.

解答 解:(1)当a=1时,f(x)=|x-1|+|x-3|≥|x-1-x+3|=2,
∴f(x)的最小值为2,当且仅当1≤x≤3时取得最小值.
(2)∵x∈R时,恒有|x-a|+|x-3|≥|(x-a)-(x-3)|=|3-a|,
∴不等式f(x)≤3的解集非空,|3-a|≤3,∴0≤a≤6.

点评 本题主要考查绝对值三角不等式,体现了转化的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.sin$\frac{5π}{3}$的值为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知sinα=$\frac{3}{5}$,且α∈($\frac{π}{2}$,π).
(1)求tan(α+$\frac{π}{4}$)的值;
(2)若β∈(0,$\frac{π}{2}$),且cos(α-β)=$\frac{1}{3}$,求cosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数y=ln|x|-x2的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.张老师 上班,有路线①与路线②两条路线可供选择.
路线①:沿途有A,B两处独立运行的交通信号灯,且两处遇到绿灯的概率依次为$\frac{1}{2},\frac{2}{3}$,若A处遇到红灯或黄灯,则导致延误时间2分钟;若B处遇到红灯或黄灯,则导致延误时间3分钟;若两处都遇到绿灯,则全程所花时间为20分钟.
路线②:沿途有a,b两处独立运行的交通信号灯,且两处遇到绿灯的概率依次为$\frac{3}{4}\frac{2}{5}$,若a处遇到红灯或黄灯,则导致延误时间8分钟;若b处遇到红灯或黄灯,则导致延误时间5分钟;若两处都遇绿灯,则全程所化时间为15分钟.
(1)若张老师选择路线①,求他20分钟能到校的概率;
(2)为使张老师日常上班途中所花时间较少,你建议张老师选择哪条路线?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线$\frac{{x}^{2}}{m}$-y2=1的一个焦点与抛物线y2=8x焦点相同,则此双曲线的离心率为(  )
A.$\frac{2\sqrt{3}}{3}$B.$\frac{2\sqrt{5}}{5}$C.2D.$\frac{2\sqrt{15}}{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设△ABC的内角A,B,C的对边分别为a,b,c,且a=$\sqrt{7}$,3sinA=$\sqrt{7}$sinB,cosC=$\frac{2\sqrt{7}}{7}$,则边c=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知△ABC的外接圆的圆心为O,半径为2,且$\overrightarrow{OA}$+$\overrightarrow{AB}$+$\overrightarrow{AC}$=$\overrightarrow{0}$,则向量$\overrightarrow{CA}$在向量$\overrightarrow{CB}$方向上的投影为(  )
A.3B.$\sqrt{3}$C.-3D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知命题p:任意x∈R,sinx≤1,则(  )
A.¬p:存在x∈R,sinx≥1B.¬p:任意x∈R,sinx≥1
C.¬p:存在x∈R,sinx>1D.¬p:任意x∈R,sinx>1

查看答案和解析>>

同步练习册答案