精英家教网 > 高中数学 > 题目详情
已知在数列{an}中,a1=
1
2
,Sn是其前n项和,且Sn=n2an-n(n-1)
(1)求{an}的通项公式;
(2)令bn=(
1
2
)n+1-an
,记数列{bn}的前n项和为Tn,求证:Tn<2.
分析:(1)由an=Sn-Sn-1 (n≥2),结合条件可得{
n+1
n
Sn
}是首项为1,公差为1的等差数列,求出Sn=
n2
n+1
,即可求{an}的通项公式;
(2)求得数列{bn}的通项,分组求和,即可证得结论.
解答:(1)解:∵an=Sn-Sn-1 (n≥2),Sn=n2an-n(n-1)
∴Sn=n2(Sn-Sn-1)-n(n-1),即(n2-1 )Sn-n2Sn-1=n(n-1),
n+1
n
Sn
-
n
n-1
Sn-1
=1,∴{
n+1
n
Sn
}是首项为1,公差为1的等差数列
n+1
n
Sn
=1+(n-1)×1=n,∴Sn=
n2
n+1

Sn=n2an-n(n-1)
n2
n+1
=n2an-n(n-1)

∴an=1-
1
n2+n

(2)证明:由(1)知,bn=(
1
2
)n+1-an
=(
1
2
)
n
+
1
n2+n
=(
1
2
)
n
+
1
n
-
1
n+1

∴Tn=
1
2
+
1
22
+…+
1
2n
+1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
=1-
1
2n
+1-
1
n+1
<2
点评:本题考查数列的递推式,考查等差关系的确定,考查数列求和的方法,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知在数列{an}中,a1=1,当n≥2时,其前n项和Sn满足Sn2=an(Sn-
1
2
)

(Ⅰ) 求Sn的表达式;
(Ⅱ) 设bn=
Sn
2n+1
,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在数列{an}中,a1=7,an+1=
7anan+7
,计算这个数列的前4项,并猜想这个数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在数列{an}中,an≠0,(n∈N*).求证:“{an}是常数列”的充要条件是“{an}既是等差数列又是等比数列”.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•河北区一模)已知在数列{an}中,Sn是前n项和,满足Sn+an=n,(n=1,2,3,…).
(Ⅰ)求a1,a2,a3的值;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)令bn=(2-n)(an-1)(n=1,2,3,…),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在数列{an}中,a1=
1
2
,Sn是其前n项和,且Sn=n2an-n(n-1).
(1)证明:数列{
n+1
n
Sn}
是等差数列;
(2)令bn=(n+1)(1-an),记数列{bn}的前n项和为Tn
①求证:当n≥2时,Tn2>2(
T2
2
+
T3
3
+…+
Tn
n
)

②)求证:当n≥2时,bn+1+bn+2+…+b2n
4
5
-
1
2n+1

查看答案和解析>>

同步练习册答案