精英家教网 > 高中数学 > 题目详情

函数y=loga(x+3)-1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中mn>0,则数学公式+数学公式的最小值为________.

8
分析:由题意可得定点A(-2,-1),2m+n=1,把要求的式子化为 4++,利用基本不等式求得结果.
解答:由题意可得定点A(-2,-1),又点A在直线mx+ny+1=0上,∴2m+n=1,
+=+=4++≥4+2=8,当且仅当 时,
等号成立,
故答案为:8.
点评:本题考查基本不等式的应用,函数图象过定点问题,把要求的式子化为 4++,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、已知函数y=loga(x+b)的图象如图所示,则ba=
27

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=loga(x+2)(a>0,a≠1)的图象恒过定点P,则P点坐标为
(-1,0)
(-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:函数y=loga(x+1)在定义域内单调递减;命题Q:不等式 x2+(2a-3)x+1>0的解集为R.如果P且Q是真命题,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=loga(x-1)+2的图象过定点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数y=loga(x+3)-1(a>0且a≠1)的图象恒过定点A,若点A也在函数f(x)=3x+b的图象上,则f(log94)=(  )
A、
8
9
B、
7
9
C、
5
9
D、
2
9

查看答案和解析>>

同步练习册答案