精英家教网 > 高中数学 > 题目详情
k为何值时,直线l1:y=kx+3k-2与直线l2:x+4y-4=0的交点在第一象限?
即当时,两直线的交点在第一象限.


∵两直线的交点在第一象限,

,
即当时,两直线的交点在第一象限.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

P、Q分别为3x+4y-12=0与6x+8y+6=0上任一点,则PQ的最小距离为(    )
A           B.             C.3                D.6

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

线l过原点,且点(2,1)到l的距离为2,则l的方程为(    )
A.y=xB.y=x
C.x=0或y=xD.x=0或y=x

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设三条直线:x-2y=1,2x+ky=3,3kx+4y=5交于一点,求k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求证等腰梯形的对角线相等.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若两平行直线2x+y-4=0与y=-2x-k-2的距离不大于5,则k的取值范围为(  )
A.[-11,-1]B.[-11,0]
C.[-11,-6)∪(-6,-1]D.[-1,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

等边△ABC的边长为,将它沿平行于BC的线段PQ折起,使平面APQ⊥平面BPQC,若折叠后AB的长为d,则d的最小值是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点,点在直线上,求取得最小值
点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

二面角A,B是棱上的两点,AC,BD分别在半平面内,,则的长为(    )
A. B.  C.  D.

查看答案和解析>>

同步练习册答案