精英家教网 > 高中数学 > 题目详情
已知数列{an}满足a1=1,a2=2,an+2=(1+cos2
2
)•an+sin2
2
(n∈N*),则该数列{an}的前n项和为
 
考点:数列的求和
专题:等差数列与等比数列
分析:先利用题中条件找到数列的特点,即其奇数项构成了首项为1,公差为1的等差数列,而其偶数项则构成了首项为2,公比为2的等比数列,再对其和用分组求和的方法找到即可.
解答: 解:由题中条件知,a1=1,a2=2,a3=a1+1=2,a4=2a2+0=4,a5=a3+1=3,a6=2a4=8…
即其奇数项构成了首项为1,公差为1的等差数列,而其偶数项则构成了首项为2,公比为2的等比数列,
∴当n为奇数时,sn=
n+1
2
×1+
n+1
2
(
n+1
2
-1)
2
×1+
2(1-2
n-1
2
)
1-2
=
(n+1)(n+3)
8
+2
n+1
2
-2,
当n为偶数时,sn=
n
2
×1
+
n
2
(
n
2
-1)
2
×1+
2(1-2
n
2
)
1-2
=
n(n+2)
8
+2
n+2
2
-2.
∴sn=
(n+1)(n+3)
8
+2
n+1
2
-2
n为奇数
n(n+2)
8
+2
n+2
2
-2
n为偶数

故答案为:sn=
(n+1)(n+3)
8
+2
n+1
2
-2
n为奇数
n(n+2)
8
+2
n+2
2
-2
n为偶数
点评:本题主要考查等差数列和等比数列的前n项和公式.考查学生的运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知一个正比例函数和一个一次函数的图象相交于点A(1,4),且一次函数的图象与x轴交于点B(3,0)
(1)求这两个函数的解析式;
(2)画出它们的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,圆ρ=2cosθ直径等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某校从参加高一年级期末考试的学生中抽出20名学生,将其成绩(均为整数)分成六段[40,50),[50,60)…[90,100],然后画出如下所示频率分布直方图,但是缺失了第四组[70,80)的信息.观察图形的信息,回答下列问题.
(1)求第四组[70,80)的频率;
(2)从成绩是[50,60)和[60,70)的两段学生中任意选两人,求他们在同一分数段的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某几何体的三视图如图所示,其中正视图是直角三角形,侧视图是正三角形,俯视图是边长为2的正方形,则此几何体的表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

判断并证明函数y=2 x2+2x+3的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lgx+x-3在区间(k-1,k)(k∈Z)上有零点,则k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左,右焦点分别为F1,F2,其右支上存在一点P,使得PF1与渐近线y=
b
a
x交于第一象限内的一点Q,且满足△F1QF2与△F1PF2的面积之比为
2
3
,则双曲线C的离心率e的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log2
1
2
×log2x2,其中x∈[
1
2
,8].
(1)求f(x)的最大值和最小值;
(2)若实数a满足f(x)-a≥0恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案