精英家教网 > 高中数学 > 题目详情

【题目】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:

(1)根据箱产量的频率分布直方图填写下面列联表,从等高条形图中判断箱产量是否与新、旧网箱养殖方法有关;

(2)根据列联表判断是否有99%的把握认为箱产量与养殖方法有关?

箱产量<50kg

箱产量≥50kg

旧养殖法

新养殖法

参考公式:

(1)给定临界值表

P(K)

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(2)其中为样本容量.

【答案】(1)表格见解析,有关; (2)有99%的把握认为箱产量与养殖方法有关.

【解析】

1)从频率分布直方图中找出相应数据完善表格,画出等高条形图,做出判断即可;(2)由联表中数据,计算出,结合临界值表做出判断.

(1)列联表如下:

箱产量<50kg

箱产量≥50kg

合计

旧养殖法

62

38

100

新养殖法

34

66

100

合计

96

104

200

由等高条形图可知新养殖法箱产量≥50kg占66%,而旧养殖法箱产量≥50kg才占38%,有比较明显的差别,所以箱产量与新、旧网箱养殖方法有关.

(2)由列联表中的数据计算可得的观测值为

故有99%的把握认为箱产量与养殖方法有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数,其中.

(1)若,求函数在处的切线方程;

(2)讨论的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地举办科技博览会,有个场馆,现将个志愿者名额分配给这个场馆,要求每个场馆至少有一个名额且各场馆名额互不相同的分配方法共有( )种

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两点,满足:,则的最大值为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数在区间上的最大值是最小值是

A. 有关,且与有关 B. 有关,但与无关

C. 无关,且与无关 D. 无关,但与有关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某运动员从A市出发沿海岸一条笔直公路以每小时15km的速度向东进行长跑训练,长跑开始时,在A市南偏东方向距A75km,且与海岸距离为45km的海上B处有一艘划艇与运动员同时出发,要追上这位运动员.

1)划艇至少以多大的速度行驶才能追上这位运动员?

2)求划艇以最小速度行驶时的行驶方向与所成的角.

3)若划艇每小时最快行驶11.25km,划艇全速行驶,应沿何种路线行驶才能尽快追上这名运动员,最快需多长时间?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在矩形中, , 的中点, 的中点.将沿折起到,使得平面平面(如图).

图1 图2

(Ⅰ)求证:

(Ⅱ)求直线与平面所成角的正弦值;

(Ⅲ)在线段上是否存在点,使得平面?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知圆Cx2+y2-4x=0及点A-10),B12

1)若直线l平行于AB,与圆C相交于MN两点,MN=AB,求直线l的方程;

2)若圆C上存在两个点P,使得PA2+PB2=aa4),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列中,

(I)求的值,由此猜想数列的通项公式:

(Ⅱ)用数学归纳法证明你的猜想.

查看答案和解析>>

同步练习册答案