精英家教网 > 高中数学 > 题目详情

【题目】为了对某课题进行研究,用分层抽样方法从三所高校的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人)

高校

相关人数

抽取人数

A

18

B

36

2

C

54

)求

)若从高校抽取的人中选2人作专题发言,求这二人都来自高校的概率.

【答案】();()

【解析】

试题分析:()利用分层抽样的特点(等比例抽样)进行求解;()利用列举法得到所有和符合题意的基本事件和基本事件个数,再利用古典概型的概率公式进行求解.

试题解析:)由题意可得.

)记从高校抽取的2人为从高校抽取的3人为,则从高校抽取的5人中选2人作专题发言的基本事件有,共10种.

设选中的2人都来自高校的事件为,则包含的基本事件有,共3种,

因此,故选中的2人都来自高校的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆,圆

(1)若过点的直线被圆截得的弦长为,求直线的方程;

(2)圆是以1为半径,圆心在圆上移动的动圆 ,若圆上任意一点分别作圆 的两条切线,切点为,求的取值范围;

(3)若动圆同时平分圆的周长、圆的周长,则动圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的前三项分别为λ6n项和为SnSk=165.

(1)λk的值;

(2)bn且数列的前n项和Tn证明:Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校在2016年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布如图所示.

(1)请先求出频率分布表中位置相应的数据,再画出频率分布直方图;

(2)该高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?

(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受考官的面试,求第4组至少有一名学生被考官面试的概率?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了解学校食堂的服务情况,随机调查了50名就餐的教师和学生.根据这50名师生对餐厅服务质量进行评分,绘制出了频率分布直方图(如图所示),其中样本数据分组为.

(1)求频率分布直方图中的值;

(2)从评分在的师生中,随机抽取2人,求此人中恰好有1人评分在上的概率;

(3)学校规定:师生对食堂服务质量的评分不得低于75分,否则将进行内部整顿,试用组中数据估计该校师生对食堂服务质量评分的平均分,并据此回答食堂是否需要进行内部整顿.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,,,,点的中点.

(1)求证:

(2)求直线平面所成角的弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合Z={(x,y)|x∈[0,2],y[-1,1]}.

(1)若x,yZ求x+y≥0的概率;

(2)若x,yR求x+y≥0的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时, 求曲线的极值;

(2)求函数的单调区间;

(3)若对任意时, 恒有成立, 求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)设

若函数处的切线过点,求的值;

时,若函数上没有零点,求的取值范围.

2)设函数,且,求证: 时,

查看答案和解析>>

同步练习册答案