精英家教网 > 高中数学 > 题目详情
如图,四棱锥P—ABCD中,PD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=2,PD=,M为棱PB的中点.

(1)证明:DM平面PBC;
(2)求二面角A—DM—C的余弦值.
(1) (2)

试题分析:(1) 连接,取的中点,连接
要证平面,只要证即可,由题设可得是等腰的底边上的中线,所以;另一方面由又可得出 
考虑到平面  平面;问题得证.
(2)根据空间图形中已知的垂直关系,可以为坐标原点,射线正半轴,建立如图所示的直角坐标系,写出点 ,分别求出平面 的一个法向量 和平面 的一个法向量,利用向的夹公式求二面角A—DM—C的余弦值
试题解析:
证明:连接,取的中点,连接

由此知,即为直角三角形,故
平面,故
所以,平面                        2分
的中点
                                    4分
                                  5分
平面                                  6分

为坐标原点,射线正半轴,建立如图所示的直角坐标系,        7分
从而
是平面的一个法向量,则
可取                                8分
同理,设是平面的一具法向量,则
可取                                  9分
                                    2分
显然二面角的大小为钝角,所以二面角的余弦值为.        12分
4、二面角的概念与法向量的求法.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,所在平面互相垂直,且,E、F分别为AC、DC的中点.
(1)求证:
(2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四边形ABCD满足,E是BC的中点,将△BAE沿AE翻折成,F为的中点.
(1)求四棱锥的体积;
(2)证明:
(3)求面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥的底面的菱形,,点边的中点,交于点

(1)求证:
(2)若的大小;
(3)在(2)的条件下,求异面直线所成角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥P-ABCD中,PB⊥平面ABCD,底面ABCD是直角梯形,∠ABC=∠BCD=90°,PB=BC=CD=AB.Q是PC上的一点,且PA∥平面QBD.

⑴确定Q的位置;
⑵求二面角Q-BD-C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在棱长为1的正方体ABCD-A1B1C1D1中,点E是棱AB上的动点.

(1)求证:DA1ED1
(2)若直线DA1与平面CED1成角为45o,求的值;
(3)写出点E到直线D1C距离的最大值及此时点E的位置(结论不要求证明).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是正方形,侧棱⊥底面的中点,作于点

(1)证明平面
(2)证明平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,矩形所在的平面和平面互相垂直,等腰梯形中,=2,分别为的中点,为底面的重心.

(1)求证:∥平面
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在长方体ABCD-A1B1C1D1中,AB=2,BC=AA1=1,则D1C1与平面A1BC1所成角的正弦值为________.

查看答案和解析>>

同步练习册答案