精英家教网 > 高中数学 > 题目详情

设集合M是满足下列条件的函数f(x)的集合:

①f(x)的定义域为R;

②存在ab,使f(x)在(-∞,a),(b,+∞)上分别单调递增,在(a,b)上单调递减.

(Ⅰ)设f1(x)=x·|x-2|,f2(x)=x3-3x2+3x,判断f1(x),f2(x)是否在集合M中,并说明理由;

(Ⅱ)求证:对任意的实数t,f(x)=都在集合M中;

(Ⅲ)是否存在可导函数f(x),使得f(x)与g(x)=(x)-x都在集合M中,并且有相同的单调区间?请说明理由.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合M是满足下列条件的函数f (x)的全体:
(1)f (x)既不是奇函数也不是偶函数;
(2)函数f (x)有零点.那么在函数
①f (x)=|x|+1,②f (x)=2x一1,③f (x)=
x-2,x>2
0,x=2
x+2,x<2
④f (x)=x2一x一1+lnx
中,属于M的有
②③④
②③④
(写出所有符合的函数序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合M是满足下列条件的函数f(x)的集合:①f(x)的定义域为R;②存在a<b,使f(x)在(-∞,a),(b,+∞)上分别单调递增,在(a,b)上单调递减.
(I)设f1(x)=x•|x-2|,f2(x)=x3-3x2+3x,判断f1(x),f2(x)是否在集合M中,并说明理由;
(II)求证:对任意的实数t,f(x)=
-x+tx2+1
都在集合M中;
(Ⅲ)是否存在可导函数f(x),使得f(x)与g(x)=f'(x)-x都在集合M中,并且有相同的单调区间?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M是满足下列条件的函数f(x)的全体:(1)当x∈[0,+∞)时,函数值为非负实数;(2)对于任意的s、t,都有f(s)+f(t)≤f(s+t);在三个函数f1(x)=x,f2(x)=2x-1,f3(x)=ln(x+1)中,属于集合M的是
f1(x)=x
f1(x)=x

查看答案和解析>>

科目:高中数学 来源:2009-2010学年北京市海淀区高三(上)期中数学试卷(文科)(解析版) 题型:解答题

设集合M是满足下列条件的函数f(x)的集合:①f(x)的定义域为R;②存在a<b,使f(x)在(-∞,a),(b,+∞)上分别单调递增,在(a,b)上单调递减.
(I)设f1(x)=x•|x-2|,f2(x)=x3-3x2+3x,判断f1(x),f2(x)是否在集合M中,并说明理由;
(II)求证:对任意的实数t,f(x)=都在集合M中;
(Ⅲ)是否存在可导函数f(x),使得f(x)与g(x)=f'(x)-x都在集合M中,并且有相同的单调区间?请说明理由.

查看答案和解析>>

同步练习册答案