精英家教网 > 高中数学 > 题目详情
17.设函数f(x)=$\frac{(x+1)^{2}+x}{{x}^{2}+1}$的最大值为M,最小值为m,则M+m=2.

分析 将f(x)变形,根据不等式的性质求出f(x)的最大值和最小值,从而求出M+m的值即可.

解答 解:f(x)=$\frac{(x+1)^{2}+x}{{x}^{2}+1}$=1+$\frac{3}{x+\frac{1}{x}}$,
故x>0时,f(x)≤1+$\frac{3}{2}$=$\frac{5}{2}$,故M=$\frac{5}{2}$,
x<0时,f(x)≥1-$\frac{3}{2}$=-$\frac{1}{2}$,故m=-$\frac{1}{2}$,
故M+m=2,
故答案为:2.

点评 本题考查了函数的单调性、最值问题,考查不等式的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.“α=30°”是“sinα=$\frac{1}{2}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=mx3+nx(x∈R).若函数f(x)的图象在点x=3处的切线与直线24x-y+1=0平行,函数f(x)在x=1处取得极值,
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数f(x)在[-2,3]的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在四边形ABCD中,$\overrightarrow{AB}$=(2,-2),$\overrightarrow{BC}$=(x,y),$\overrightarrow{CD}$=(1,$\frac{7}{2}$).
(1)若$\overrightarrow{BC}$∥$\overrightarrow{DA}$,求x,y之间的关系式;
(2)满足(1)的同时又有$\overrightarrow{AC}$⊥$\overrightarrow{BD}$,求x,y的值以及四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知圆C的圆心在x轴上,且经过A(5,2),B(-1,4)两点,则圆C的方程是(  )
A.(x+2)2+y2=17B.(x-2)2+y2=13C.(x-1)2+y2=20D.(x+1)2+y2=40

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆C:x2+(y-1)2=9,直线l:x-my+m-2=0,且直线l与圆C相交于A、B两点.
(Ⅰ)若|AB|=4$\sqrt{2}$,求直线l的倾斜角;
(Ⅱ)若点P(2,1)满足$\overrightarrow{AP}$=$\overrightarrow{PB}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知双曲线E:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的一条渐近线过点(1,-1),则E的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{5}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知a${\;}^{\frac{1}{2}}$=$\frac{4}{9}$(a>0),则log${\;}_{\frac{2}{3}}$a=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=log2(2x)•log2(4x),g(t)=$\frac{f(x)}{t}$-3,其中t=log2x(4≤x≤8).
(1)求f($\sqrt{2}$)的值;
(2)求函数g(t)的解析式,判断g(t)的单调性并用单调性定义给予证明;
(3)若a≤g(t)恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案