精英家教网 > 高中数学 > 题目详情

【题目】设等差数列{an}满足 =1,公差d∈(﹣1,0),当且仅当n=9时,数列{an}的前n项和Sn取得最大值,求该数列首项a1的取值范围(
A.(
B.[ ]
C.(
D.[ ]

【答案】C
【解析】解:∵等差数列{an}满足 =1, ∴(sina3cosa6﹣sina6cosa3)(sina3cosa6+sina6cosa3
=sin(a3+a6)=(sina3cosa6+sina6cosa3),
∴sina3cosa6﹣sina6cosa3=1,
即sin(a3﹣a6)=1,或sin(a3+a6)=0(舍)
当sin(a3﹣a6)=1时,
∵a3﹣a6=﹣3d∈(0,3),a3﹣a6=2kπ+ ,k∈Z,
∴﹣3d= ,d=﹣
= +(a1 )n,
且仅当n=9时,数列{an}的前n项和Sn取得最大值,
∴﹣ =9,化为
=
故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,若acosA=bsinb,且 ,则sinA+sinC的最大值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为曲线上两点, 的横坐标之和为2.

1)求直线的斜率;

(2)设为曲线上一点,曲线在点处的切线与直线平行,且求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=asinxcosx﹣ acos2x+ a+b(a>0)
(1)写出函数的单调递减区间;
(2)设x∈[0, ],f(x)的最小值是﹣2,最大值是 ,求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 , 定义使f(1)f(2)f(3)…f(k)为整数的数k(k∈N*)叫做企盼数,则在区间[1,2013]内这样的企盼数共有 个.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且满足bcosA=(2c+a)cos(π﹣B)
(1)求角B的大小;
(2)若b=4,△ABC的面积为 ,求a+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校学生总数为8000人,其中一年级1600人,二年级3200人,三年级2000人,四年级1200人.为了完成一项调查,决定采用分层抽样的方法,从中抽取容量为400的样本.
(1)各个年级分别抽取了多少人?
(2)若高校教职工有505人,需要抽取50个样本,你会采用哪种抽样方法,请写出具体抽样过程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a2= ,且an+1=3an﹣1(n∈N*).
(1)求数列{an}的通项公式以及数列{an}的前n项和Sn的表达式;
(2)若不等式 ≤m对n∈N*恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个匀速旋转的摩天轮每12分钟转一周,最低点距地面2米,最高点距地面18米,P是摩天轮轮周上一定点,从P在最低点时开始计时,则16分钟后P点距地面的高度是

查看答案和解析>>

同步练习册答案