精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线为抛物线上不同的三点.

1)当点的坐标为时,若直线过抛物线焦点且斜率为,求直线斜率之积;

2)若为以为顶点的等腰直角三角形,求面积的最小值.

【答案】1;(2.

【解析】

1)设点,可得出直线的方程为,将直线的方程与抛物线的方程联立,列出韦达定理,然后利用斜率公式结合韦达定理可计算出直线斜率之积;

2)设点,设直线的斜率为,不妨设,可得出直线的方程为,将直线的方程与抛物线的方程联立,求出,同理得出,再由得出,然后利用三角形的面积公式,结合基本不等式求出面积的最小值.

1)设点,则

直线的斜率为,同理,直线的斜率为.

抛物线的焦点为

直线的斜率为,且过点,则直线的方程为

将直线的方程与抛物线的方程联立,得

,由韦达定理得.

因此,直线斜率之积为

2)设点

设直线的斜率为,不妨设,则直线的方程为

联立直线与抛物线的方程,消去

由韦达定理得,同理可得

,同理可得

由题中图象可知,符号相反,

,则

化简得

的面积为,当且仅当时,等号成立,

因此,面积的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某部影片的盈利额(即影片的票房收入与固定成本之差)记为,观影人数记为,其函数图象如图(1)所示.由于目前该片盈利未达到预期,相关人员提出了两种调整方案,图(2)、图(3)中的实线分别为调整后的函数图象.

给出下列四种说法:

①图(2)对应的方案是:提高票价,并提高成本;

②图(2)对应的方案是:保持票价不变,并降低成本;

③图(3)对应的方案是:提高票价,并保持成本不变;

④图(3)对应的方案是:提高票价,并降低成本.

其中,正确的说法是____________.(填写所有正确说法的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】改编自中国神话故事的动画电影《哪吒之魔童降世》自726日首映,在不到一个月的时间,票房收入就超过了38亿元,创造了中国动画电影的神话.小明和同学相约去电影院观看《哪吒之魔童降世》,影院的三个放映厅分别在730800830开始放映,小明和同学大约在740830之间到达影院,且他们到达影院的时间是随机的,那么他们到达后等待的时间不超过10分钟的概率是( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=,若关于的方程恰好有 4 个不相等的实数解,则实数的取值范围为( )

A. B. C. D. (0,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

1)若,求函数处的切线方程;

2)若函数在定义域上恰有两个不同的零点,求实数a的取值范围;

3)设函数在区间)上存在极值,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中).

(1)当时,求函数的图像在处的切线方程;

(2)若恒成立,求的取值范围;

(3)设,且函数有极大值点,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在统计学中,同比增长率一般是指和去年同期相比较的增长率,环比增长率一般是指和前一时期相比较的增长率.2020229日人民网发布了我国2019年国民经济和社会发展统计公报图表,根据2019年居民消费价格月度涨跌幅度统计折线图,下列说法正确的是( )

A.2019年我国居民每月消费价格与2018年同期相比有涨有跌

B.2019年我国居民每月消费价格中2月消费价格最高

C.2019年我国居民每月消费价格逐月递增

D.2019年我国居民每月消费价格3月份较2月份有所下降

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着移动互联网的发展,与餐饮美食相关的手机APP软件层出不穷.现从某市使用A和B两款订餐软件的商家中分别随机抽取100个商家,对它们的“平均送达时间”进行统计,得到频率分布直方图如下.

(1)已知抽取的100个使用A款订餐软件的商家中,甲商家的“平均送达时间”为18分钟。现从使用A款订餐软件的商家中“平均送达时间”不超过20分钟的商家中随机抽取3个商家进行市场调研,求甲商家被抽到的概率;

(2)试估计该市使用A款订餐软件的商家的“平均送达时间”的众数及平均数;

(3)如果以“平均送达时间”的平均数作为决策依据,从A和B两款订餐软件中选择一款订餐,你会选择哪款?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以昆明、玉溪为中心的滇中地区,冬无严寒、夏无酷暑,世界上主要的鲜切花品种在这里都能实现周年规模化生产.某鲜花批发店每天早晨以每支2元的价格从鲜切花生产基地购入某种玫瑰,经过保鲜加工后全部装箱(每箱500支,平均每支玫瑰的保鲜加工成本为1元),然后以每箱2000元的价格整箱出售.由于鲜花的保鲜特点,制定了如下促销策略:若每天下午3点以前所购进的玫瑰没有售完,则对未售出的玫瑰以每箱1200元的价格降价处理.根据经验,降价后能够把剩余玫瑰全部处理完毕,且当天不再购进该种玫瑰,由于库房限制每天最多加工6.

1)若某天该鲜花批发店购入并加工了6箱该种玫瑰,在下午3点以前售出4箱,且被6位不同的顾客购买.现从这6位顾客中随机选取2人赠送优惠卡,则恰好一位是以2000元价格购买的顾客,另一位是以1200元价格购买的顾客的概率是多少?

2)该鲜花批发店统计了100天内该种玫瑰在每天下午3点以前的销售量(单位:箱),统计结果如下表所示(视频率为概率):

/

4

5

6

频数

30

①估计接下来的一个月(30天)内该种玫瑰每天下午3点以前的销售量不少于5箱的天数是多少?

②若批发店每天在购进5箱数量的玫瑰时所获得的平均利润最大(不考虑其他成本),求的取值范围.

查看答案和解析>>

同步练习册答案