精英家教网 > 高中数学 > 题目详情

 

(1)已知公差不为0的数列{an}的首项a1=1,前n项的和为Sn,若数列{}是等差数列,

①求an;②令bn=qSn(q>0),若对一切n∈N*,都有>2bn*bn+2,求q的取值范围。

(2)是否存在各项都是正整数的无穷数列{cn},使>2Cn*Cn+2对一切n∈N*都成立,若存在,请写出数列的一个通项公式,若不存在,说明理由。

 

【答案】

【解析】

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知公差不为0的等差数列{an}的首项a1为a(a∈R)设数列的前n项和为Sn,且
1
a1
1
a2
1
a4
成等比数列.
(Ⅰ)求数列{an}的通项公式及Sn
(Ⅱ)记An=
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
,Bn=
1
a1
+
1
a2
+…+
1
a2n-1
,当n≥2时,试比较An与Bn的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差不为0的等差数列{an}满足a2=3,a1,a3,a7成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列{bn}满足bn=
an
an+1
+
an+1
an
,求数列{bn}的前n项和Sn
(Ⅲ)设cn=2n(
an+1
n
-λ)
,若数列{cn}是单调递减数列,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差不为0的等差数列{an}的首项a1=a(a∈R),设数列{an}的前n项和为Sn,且a1、a2、a4恰为等比数列{bn}的前三项.
(1)求数列{an}的通项公式及Sn
(2)当n≥2时,比较An=
1
S1
+
1
S2
+…+
1
Sn
Bn=
1
b1
+
1
b2
+…+
1
bn
的大小.(可使用结论:n≥2时,2n>n+1)

查看答案和解析>>

科目:高中数学 来源:2011届江苏省南京市高三第二次模拟考试数学卷 题型:解答题


(1)已知公差不为0的数列{an}的首项a1=1,前n项的和为Sn,若数列{}是等差数列,
①求an;②令bn=qSn(q>0),若对一切n∈N*,都有>2bn*bn+2,求q的取值范围。
(2)是否存在各项都是正整数的无穷数列{cn},使>2Cn*Cn+2对一切n∈N*都成立,若存在,请写出数列的一个通项公式,若不存在,说明理由。

查看答案和解析>>

同步练习册答案