【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且满足bcosA﹣asinB=0.
(1)求A;
(2)已知a=2,B=,求△ABC的面积.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,设点集,令.从集合Mn中任取两个不同的点,用随机变量X表示它们之间的距离.
(1)当n=1时,求X的概率分布;
(2)对给定的正整数n(n≥3),求概率P(X≤n)(用n表示).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设顶点在原点,焦点在轴上的拋物线过点,过作抛物线的动弦, ,并设它们的斜率分别为, .
(Ⅰ)求拋物线的方程;
(Ⅱ)若,求证:直线的斜率为定值,并求出其值;
(III)若,求证:直线恒过定点,并求出其坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有两对情侣都打算从巴黎、厦门、马尔代夫、三亚、泰国这五个地方选取一个地方拍婚纱照,且这两对情侣选择的地方不同,则这两对情侣都选在国外拍婚纱照的概率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某小学举办“父母养育我,我报父母恩”的活动,对六个年级(一年级到六年级的年级代码分别为1,2…,6)的学生给父母洗脚的百分比y%进行了调查统计,绘制得到下面的散点图.
(1)由散点图看出,可用线性回归模型拟合y与x的关系,请用相关系数加以说明;
(2)建立y关于x的回归方程,并据此预计该校学生升入中学的第一年(年级代码为7)给父母洗脚的百分比.
附注:参考数据:
参考公式:相关系数,若r>0.95,则y与x的线性相关程度相当高,可用线性回归模型拟合y与x的关系.回归方程中斜率与截距的最小二乘估计公式分别为= ,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一场娱乐晚会上, 有5位民间歌手(1至5号)登台演唱, 由现场数百名观众投票选出最受欢迎歌手. 各位观众须彼此独立地在选票上选3名选手, 其中观众甲是1号歌手的歌迷, 他必选1号, 不选2号, 另在3至5号中随机选2名. 观众乙和丙对5位歌手的演唱没有偏爱, 因此在1至5号中随机选3名歌手.
(Ⅰ) 求观众甲选中3号歌手且观众乙未选中3号歌手的概率;
(Ⅱ) X表示3号歌手得到观众甲、乙、丙的票数之和, 求X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】基于移动互联技术的共享单车被称为“新四大发明”之一,短时间就风靡全国,带给人们新的出行体验,某共享单车运营公司的市场研究人员为了解公司的经营状况,对该公司最近六个月内的市场占有率进行了统计,设月份代码为,市场占有率为,得结果如下表:
年月 | 2018.10 | 2018.11 | 2018.12 | 2019.1 | 2019.2 | 2019.3 |
1 | 2 | 3 | 4 | 5 | 6 | |
11 | 13 | 16 | 15 | 20 | 21 |
(1)观察数据看出,可用线性回归模型拟合与的关系,请用相关系数加以说明(精确到0.001);
(2)求关于的线性回归方程,并预测该公司2019年4月份的市场占有率;
(3)根据调研数据,公司决定再采购一批单车扩大市场,现有采购成本分别为1000元/辆和800元/辆的甲、乙两款车型报废年限各不相同,考虑到公司的经济效益,该公司决定先对两款单车各100辆进行科学模拟测试,得到两款单车使用寿命频率表如下:
经测算,平均每辆单车可以为公司带来收入500元,不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且用频率估计每辆单车使用寿命的概率,以每辆单车产生利润的期望值为决策依据,如果你是该公司的负责人,你会选择采购哪款车型?
参考数据:,,,
回归方程中斜率和截距的最小二乘法估计公式分别为,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com