精英家教网 > 高中数学 > 题目详情
定义在R的函数f(x)满足f(x+y)=f(x)+f(y),x,y∈R,且f(1)=2,有下面的四个式子:
①f(1)+2f(1)+…+nf(1);②f[
n(n+1)
2
];③n(n+1);④n(n+1)f(1),则其中与f(1)+f(2)+…+f(n)相等的有(  )
分析:由已知,定义在R上的函数f(x)对任意x,y满足f(x+y)=f(x)+f(y)(x,y∈R),且f(1)=2,f(2)=2f(2),
f(n)=nf(1),f(1)+f(2)+…+f(n)=f(1)+2f(1)+…+nf(1)=f[
n(n+1)
2
]
=
n(n+1)
2
f(1)=n(n+1)即可判定真假.
解答:解:由定义知f(1)=2,f(2)=2f(2),f(n)=nf(1),
f(1)+f(2)+…+f(n)=f(1)+2f(1)+…+nf(1)=f[
n(n+1)
2
]
=
n(n+1)
2
f(1)=n(n+1);
故①②③正确,④不正确;
故选C.
点评:在新定义函数的规则下,考查等差数列求和,隐蔽性相当强.请读者注意总结本题的经验.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设定义在R的函数f(x)同时满足以下条件:①f(x)+f(-x)=0;②f(x)=f(x+2);③当0≤x<1时,f(x)=2x-1.则f(
1
2
)+f(1)+f(
3
2
)+f(2)+f(
5
2
)
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R的函数f(x)对任意实数x,y恒有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,又f(1)=-
23

(1)求征,f(x)为奇函数;
(2)求证:f(x)在R上是减函数;
(3)求f(x)在[-3,6]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数y=f(x),有下列命题:
①若a∈[-2,2],则函数f(x)=
x2+ax+1
的定域为R;
②若f(x)=log
1
2
(x2-3x+2)
,则f(x)的单调增区间为(-∞,
3
2
)

③(理)若f(x)=
1
x2-x-2
,则
lim
x→2
[(x-2)f(x)]=0

(文)若f(x)=
1
x2-x-2
,则值域是(-∞,0)∪(0,+∞)
④定义在R的函数f(x),且对任意的x∈R都有:f(-x)=-f(x),f(1+x)=f(1-x),则4是y=f(x)的一个周期.
其中真命题的编号是
 
.(文理相同)

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R的函数f(x)满足:①对任意的实数x、y∈R有f(x+y)=f(x)•f(y).②当x>0时,f(x)>1,数列{an}满足a1=f(0),且f(an+1)=
1
f(-1-an)
,(n∈N*)

(1)求f(0),并判断f(x)的单调性;
(2)求数列{an}的通项公式an
(3)令bn是最接近
an
的正整数,即|
an
-bn|<
1
2
bn∈N*,设Tn=
1
b1
+
1
b2
+
+ …
1
bn
(n∈N*)
求T1000

查看答案和解析>>

同步练习册答案