精英家教网 > 高中数学 > 题目详情

【题目】在正方体中,如果动点在线段上,动点在正方体的四条边上,那么,对于任何一条直线,在平面上,总存在相应的一条直线,使得该直线与直线

A.平行B.异面C.相交D.垂直

【答案】D

【解析】

直线可能在平面内,可能与平面平行,可能与平面相交,在平面上,总存在一条直与直线垂直.

动点在线段上,动点在正方体的四条边上

则直线可能在平面内,可能与平面平行,可能与平面相交

若直线在平面, 在平面的直线不可能与异面,

在平面上总存在一条直与直线垂直.

若直线与平面平行,在平面的直线不可能与相交,

在平面上,总存在一条直与直线在面内的射影垂直,

直线与平面相交,在平面的直线不可能与平行,
所以在平面上,总存在相应的一条直线,使得该直线与直线垂直.
故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C1(a>b>0)的两个焦点分别为F1F2,短轴的一个端点为PPF1F2内切圆的半径为,设过点F2的直线l与被椭圆C截得的线段为RS,当lx轴时,|RS|3.

(1) 求椭圆C的标准方程;

(2) 若点M(0m),(),过点M的任一直线与椭圆C相交于两点A.By轴上是否存在点N0n)使∠ANM=∠BNM恒成立?若存在,判断mn应满足关系;若不存在,说明理由。

(3) 在(2)条件下m=1时,求ABN面积的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别是椭圆的左右焦点.

(Ⅰ)若是第一象限内该椭圆上的一点, ,求点的坐标.

(Ⅱ)若直线与圆相切,交椭圆两点,是否存在这样的直线,使得

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年12月28日,成雅铁路开通运营,使川西多个市县进入动车时代,融入全国高铁网,这对推动沿线经济社会协调健康发展具有重要意义.在试运行期间,铁道部门计划在成都和雅安两城之间开通高速列车,假设每天7:00-8:00,8:00-9:00两个时间段内各发一趟列车由雅安到成都(两车发车情况互不影响),雅安发车时间及其概率如下表所示:

第一趟列车

第二趟列车

发车时间

7:10

7:30

7:50

8:10

8:30

8:50

概率

0.2

0.3

0.5

0.2

0.3

0.5

若小王、小李二人打算乘动车从雅安到成都游玩,假设他们到达雅安火车站候车的时间分别是周六7:00和7:20(只考虑候车时间,不考虑其它因素).

(1)求小王候车10分钟且小李候车30分钟的概率;

(2)设小李候车所需时间为随机变量,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面中两条直线相交于点O,对于平面上任意一点M,若xy分别是M到直线的距离,则称有序非负实数对(xy)是点M的“距离坐标”.已知常数p≥0,q≥0,给出下列三个命题:

①若p=q=0,则“距离坐标”为(00)的点有且只有1个;

②若pq=0,且p+q≠0,则“距离坐标”为(pq的点有且只有2个;

③若pq≠0则“距离坐标”为pq的点有且只有4个.

上述命题中,正确命题的是______.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在侧棱垂直于底面的三棱柱中,为侧面的对角线的交点,分别是中点

(1)求证:平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在菱形 中,.

(1)若的中点,则 ______

(2)点在线段上运动,则||的最小值为___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点离心率为

(Ⅰ)求椭圆的方程;

(Ⅱ)过点的直线交椭圆于两点,为椭圆的左焦点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若处取得极值求函数的单调区间

(Ⅱ)若时函数有两个不同的零点.

的取值范围;②求证:.

查看答案和解析>>

同步练习册答案