精英家教网 > 高中数学 > 题目详情
已知sin2α=
1
3
,则cos2
π
4
-α)=
 
考点:二倍角的正弦
专题:三角函数的求值
分析:根据cos2(α-
π
4
)化简为
1
2
(1+sin2α),计算求得结果.
解答: 解:∵sin2α=
1
3

∴cos2
π
4
-α)=cos2(α-
π
4
)=(
2
2
cosα+
2
2
sinα)2=
1
2
(1+sin2α)=
2
3

故答案为:
2
3
点评:本题主要考查二倍角公式、两角差的余弦公式的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若x,y∈R且4x2+y2-2xy=2,则2x+y的最大值为(  )
A、2
B、
2
C、4
D、2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知4x=5y=10,则
1
x
+
2
y
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若复数z满足z=(z-1)•i,则复数z的模为(  )
A、1
B、
2
2
C、
2
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1、F2为椭圆
x2
4
+y2=1的左、右焦点,过椭圆中心任作一直线与椭圆交于P,Q两点,当四边形PF1QF2面积最大时,
PF1
PF2
的值等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式4x2-4x-15≥0的解集是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知有穷数列{an}各项均不相等,将{an}的项从大到小重新排序后相应的项数构成新数列{pn},称{pn}为{an}的“序数列”.例如数列:a1,a2,a3满足a1>a3>a2,则其序数列{pn}为1,3,2.
(1)若x,y∈R+,x+y=2且x≠y,写出数列:1,xy,
x2+y2
2
的序数列并说明理由;
(2)求证:有穷数列{an}的序数列{pn}为等差数列的充要条件是有穷数列{an}为单调数列;
(3)若项数不少于5项的有穷数列{bn}、{cn}的通项公式分别是bn=n•(
3
5
)n
(n∈N*),cn=-n2+tn(n∈N*),且{bn}的序数列与{cn}的序数列相同,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列有关命题的说法正确的是(  )
A、若p∧q为假命题,则p,q均为假命题
B、命题“若x=y,则sinx=siny”为真命题
C、命题“?x0∈R,使得x02+x0+1<0”的否定是:“?x∈R,均有x2+x+1<0”
D、“x2=1”是“x=-1”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和为Sn,已知若a1=
1
2
,Sn=n2an-n(n-1)(n∈N*
(Ⅰ)求a2,a3
(Ⅱ)求数列{an}的通项;
(Ⅲ)设bn=
1
SnSn+1
,数列{bn}的前n项的和为Tn,证明:Tn
5
2
(n∈N*

查看答案和解析>>

同步练习册答案