精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,直线l的参数方程 (t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为:ρ=4cosθ.
(1)把直线l的参数方程化为极坐标方程,把曲线C的极坐标方程化为普通方程;
(2)求直线l与曲线C交点的极坐标(ρ≥0,0≤θ<2π).

【答案】
(1)解:直线l的参数方程 (t为参数),消去参数t化为 =0,

代入可得: =0,

由曲线C的极坐标方程为:ρ=4cosθ,变为ρ2=4ρcosθ,化为x2+y2﹣4x=0


(2)解:联立 ,解得

∴直线l与曲线C交点的极坐标(ρ≥0,0≤θ<2π)为


【解析】(1)直线l的参数方程 (t为参数),消去参数t化为 =0,把 代入即可得出,由曲线C的极坐标方程为:ρ=4cosθ,变为ρ2=4ρcosθ,代入化为直角坐标方程.(2)联立 ,解出再化为极坐标(ρ≥0,0≤θ<2π)为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+(a+2)x+5+a,a∈R.
(Ⅰ)若方程f(x)=0有一正根和一个负根,求a的取值范围;
(Ⅱ)当x>﹣1时,不等式f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某营养师要求为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营状中至少含64个单位的碳水化合物和42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=eax﹣x﹣1,其中a≠0.若对一切x∈R,f(x)≥0恒成立,则a的取值集合

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C对应边分别是a,b,c,c=2,sin2A+sin2B﹣sin2C=sinAsinB.
(1)若sinC+sin(B﹣A)=2sin2A,求△ABC面积;
(2)求AB边上的中线长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,△ABC三个顶点分别为A(2,4),B(1,﹣3),C(﹣2,1).
(1)求BC边上的高所在的直线方程;
(2)设AC中点为D,求△DBC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+(y﹣1)2=9,直线l:x﹣my+m﹣2=0,且直线l与圆C相交于A、B两点. (Ⅰ)若|AB|=4 ,求直线l的倾斜角;
(Ⅱ)若点P(2,1)满足 = ,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面为正方形的四棱锥P﹣ABCD中,侧面PAD⊥底面ABCD,PA⊥AD,PA=AD,则异面直线PB与AC所成的角为(
A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正方体ABCD﹣A1B1C1D1中,M,E,F,N分别为A1B1 , B1C1 , C1D1 , D1A1的中点,求证:
(1)E,F,D,B四点共面;
(2)面AMN∥平面EFDB.

查看答案和解析>>

同步练习册答案