精英家教网 > 高中数学 > 题目详情

【题目】在直三棱柱ABC—A1B1C1中,CA=CB=4,,E,F分别为AC,CC1的中点,则直线EF与平面AA1B1B所成的角是

A. 30° B. 45° C. 60° D. 90°

【答案】A

【解析】

连接AC1,作CD⊥A1B1于D,连接AD,说明∠C1AD就是直线EF与平面AA1B1B所成的角,通过求解三角形求解即可.

连接AC1,则EF∥AC1,直线EF与平面AA1B1B所成的角,就是

直线EF与平面AA1B1B所成的角,AC1与平面AA1B1B所成的角;

作CD⊥A1B1于D,连接AD,因为直三棱柱ABC﹣A1B1C1中,CA=CB=4,所以底面是等腰三角形,则C1D⊥平面AA1B1B,可知∠C1AD

就是直线EF与平面AA1B1B所成的角,CA=CB=4,AB=2,CC1=2

可得CD==3,AD==3

所以tan∠C1AD==

所以∠C1AD=30°.

故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(2016·雅安高一检测)已知函数f(x)=2x的定义域是[0,3],设g(x)=f(2x)-f(x+2),

(1)求g(x)的解析式及定义域;

(2)求函数g(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在P地正西方向8kmA处和正东方向1kmB处各有一条正北方向的公路ACBD,现计划在ACBD路边各修建一个物流中心EF,为缓解交通压力,决定修建两条互相垂直的公路PEPF,设

为减少对周边区域的影响,试确定EF的位置,使的面积之和最小;

为节省建设成本,求使的值最小时AEBF的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以原点为极点轴的正半轴为极轴建立极坐标系已知曲线的极坐标方程为直线的参数方程为为参数),点的极坐标为设直线与曲线相交于两点

1写出曲线的直角坐标方程和直线的普通方程;

2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C的对边分别为,已知

(1)求角

(2)如图,D为△ABC外一点,若在平面四边形ABCD中,,求△ACD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线M的左、右顶点分别为AB,设P是曲线M上的任意一点.

1)当P异于AB时,记直线PAPB的斜率分别为是否为定值,请说明理由.

2)已知点C在曲线M长轴上(异于AB两点),且的最大值为7,求点C的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:如果数列的任意连续三项均能构成一个三角形的三边长,则称为三角形”数列对于“三角形”数列,如果函数使得仍为一个三角形”数列,则称是数列的“保三角形函数”

1)已知是首项为2,公差为1的等差数列,若是数列的保三角形函数”,求的取值范围;

2)已知数列的首项为2019是数列的前项和,且满足,证明是“三角形”数列;

3)求证:函数是数列1的“保三角形函数”的充要条件是

查看答案和解析>>

同步练习册答案