精英家教网 > 高中数学 > 题目详情
等腰三角形ABC,若一腰的两个端点坐标分别是A(4,2),B(-2,0),A顶点,则另一腰的一个端点C的轨迹方程是( )
A.x2+y2-8x-4y=0
B.x2+y2-8x-4y-20=0(x≠10,x≠-2)
C.x2+y2+8x+4y-20=0(x≠-2,x≠10)
D.x2+y2-8x-4y+20=0(x≠-2,x≠10)
【答案】分析:设另一个点的从标为C(x,y),由题设条件知(x-4)2+(y-2)2=40,x≠10,x≠-2.由此能得到正确选项.
解答:解:设另一个点的从标为C(x,y),则
(x-4)2+(y-2)2=40,x≠10,x≠-2.
整理,得x2+y2-8x-4y-20=0(x≠10,x≠-2)
故选B.
点评:本题考查点的轨迹方程和求法,解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

10、等腰三角形ABC,若一腰的两个端点坐标分别是A(4,2),B(-2,0),A顶点,则另一腰的一个端点C的轨迹方程是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

等腰三角形ABC,若一腰的两个端点坐标分别是A(4,2),B(-2,0),A顶点,则另一腰的一个端点C的轨迹方程是


  1. A.
    x2+y2-8x-4y=0
  2. B.
    x2+y2-8x-4y-20=0(x≠10,x≠-2)
  3. C.
    x2+y2+8x+4y-20=0(x≠-2,x≠10)
  4. D.
    x2+y2-8x-4y+20=0(x≠-2,x≠10)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

等腰三角形ABC,若一腰的两个端点坐标分别是A(4,2),B(-2,0),A顶点,则另一腰的一个端点C的轨迹方程是(  )
A.x2+y2-8x-4y=0
B.x2+y2-8x-4y-20=0(x≠10,x≠-2)
C.x2+y2+8x+4y-20=0(x≠-2,x≠10)
D.x2+y2-8x-4y+20=0(x≠-2,x≠10)

查看答案和解析>>

科目:高中数学 来源:《第4章 圆与方程》2013年单元测试卷2(解析版) 题型:选择题

等腰三角形ABC,若一腰的两个端点坐标分别是A(4,2),B(-2,0),A顶点,则另一腰的一个端点C的轨迹方程是( )
A.x2+y2-8x-4y=0
B.x2+y2-8x-4y-20=0(x≠10,x≠-2)
C.x2+y2+8x+4y-20=0(x≠-2,x≠10)
D.x2+y2-8x-4y+20=0(x≠-2,x≠10)

查看答案和解析>>

同步练习册答案