分析 (Ⅰ)推导出BM⊥AM,BM⊥AM,由此能证明BM⊥平面ADM.
(Ⅱ)推导出${V_1}=\frac{1}{2}{V_{D-ABM}}$,${S_1}=\frac{2}{3}{S_2}$,且${V_2}=\frac{3}{2}{V_{D-ABM}}$,由此能求出三棱锥E-ABM的体积V1与四棱锥D-ABCM的体积V2之比.
解答 (本小题满分12分)
证明:(Ⅰ)因为矩形ABCD中,AB=2,AD=1,M为CD的中点,
所以$AM=BM=\sqrt{2}$,所以AM2+BM2=AB2,所以BM⊥AM.…(3分)
因为平面ADM⊥平面ABCM,平面ADM∩平面ABCM=AM,
又BM?平面ABCM,且BM⊥AM,
∴BM⊥平面ADM.…(6分)
解:(Ⅱ)因为E为DB的中点,所以${V_1}=\frac{1}{2}{V_{D-ABM}}$,…(8分)
又直角三角形ABM的面积${S_1}=\frac{1}{2}•\sqrt{2}•\sqrt{2}=1$,
梯形ABCM的面积${S_2}=\frac{1}{2}•({1+2})•1=\frac{3}{2}$,
所以${S_1}=\frac{2}{3}{S_2}$,且${V_2}=\frac{3}{2}{V_{D-ABM}}$,…(11分)
所以$\frac{V_1}{V_2}=\frac{{\frac{1}{2}{V_{D-ABM}}}}{{\frac{3}{2}{V_{D-ABM}}}}=\frac{1}{3}$.…(12分)
点评 本题考查线面垂直的证明,考查两个几何体的体积的比值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:选择题
A. | p∨(¬q) | B. | p∨q | C. | p∧q | D. | (¬p)∨(¬q) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $?{x_0}∈R,{x_0}^2+2>0$ | B. | $?{x_0}∈R,{x_0}^2+2≤0$ | ||
C. | $?{x_0}∈R,{x_0}^2+2<0$ | D. | ?x∈R,x2+2≤0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 3 | C. | $\frac{{5\sqrt{7}}}{7}$ | D. | $\frac{{15\sqrt{7}}}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 20π | B. | 10π | C. | 5π | D. | 5$\sqrt{5}$π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com