精英家教网 > 高中数学 > 题目详情

【题目】在8件获奖作品中,有3件一等奖,有5件二等奖,从这8件作品中任取3件.
(1)求取出的3件作品中,一等奖多于二等奖的概率;
(2)设X为取出的3件作品中一等奖的件数,求随机变量X的分布列和数学期望.

【答案】
(1)解:设A为事件“取出的3件产品中,一等奖多于二等奖”,

依题意,则有P(A)= =

∴取出的3件作品中,一等奖多于二等奖的概率为


(2)解:随机变量X的所有可能取值为0,1,2,3,

P(X=0)= =

P(X=1)= =

P(X=2)= =

P(X=3)= =

∴随机变量X的分布列为:

X

0

1

2

3

P

∴EX= =


【解析】(1)设A为事件“取出的3件产品中,一等奖多于二等奖”,利用互斥事件加法公式能求出取出的3件作品中,一等奖多于二等奖的概率.(2)随机变量X的所有可能取值为0,1,2,3,分别求出相应的概率,由此能求出随机变量X的分布列和数学期望.
【考点精析】利用离散型随机变量及其分布列对题目进行判断即可得到答案,需要熟知在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设集合A={1,2,6},B={2,4},C={1,2,3,4},则(A∪B)∩C=(  )
A.{2}
B.{1,2,4}
C.{1,2,4,6}
D.{1,2,3,4,6}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某个体户计划经销AB两种商品,据调查统计,当投资额为x(x≥0)万元时,在经销AB商品中所获得的收益分别为f(x)万元与g(x)万元,其中f(x)=a(x-1)+2,g(x)=6ln(xb)(a>0,b>0).已知投资额为零时收益为零.

(1)ab的值;

(2)如果该个体户准备投入5万元经销这两种商品,请你帮他制定一个资金投入方案,使他能获得最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别是a,b,c,已知(a-3b)cos C=c(3cos B-cos A).

(1)求的值; (2)若c=a,求角C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】郑一号宇宙飞船返回舱顺利到达地球后,为了及时将航天员救出,地面指挥中心的在返回舱预计到达的区域安排了同一条直线上的三个救援中心(记为).当返回舱距地面1万米的点的时(假定以后垂直下落,并在点着陆),救援中心测得飞船位于其南偏东60°方向,仰角为60°救援中心测得飞船位于其南偏西30°方向,仰角为30°救援中心测得着陆点位于其正东方向.

1)求两救援中心间的距离;

2救援中心与着陆点间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C经过点A(2,3)、B(4,0),对称轴为坐标轴,焦点F1、F2在x轴上.
(1)求椭圆C的方程;
(2)求∠F1AF2的角平分线所在的直线l与椭圆C的另一个交点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}是各项均为正数的等比数列,且a1=3,a2+a3=36.
(1)求数列{an}的通项公式;
(2)若数列{bn}对任意的正整数n都有 + + +…+ =2n+1,求b1+b2+b3+…+b2015的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C1的参数方程为 (α为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为,曲线C2的极坐标方程为 (a>0).

(1)求直线l与曲线C1的交点的极坐标(ρθ)(ρ≥0,0≤θ<2π);

(2)若直线lC2相切,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四面体ABCD中,AB,BC,BD两两垂直,BC=BD=2,点E是CD的中点,异面直线AD与BE所成角的余弦值为,则直线BE与平面ACD所成角的正弦值为(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案