精英家教网 > 高中数学 > 题目详情
已知两点,直线AM、BM相交于点M,且这两条直线的斜率之积为.
(Ⅰ)求点M的轨迹方程;
(Ⅱ)记点M的轨迹为曲线C,曲线C上在第一象限的点P的横坐标为1,直线PE、PF与圆)相切于点E、F,又PE、PF与曲线C的另一交点分别为Q、R.
求△OQR的面积的最大值(其中点O为坐标原点).
(Ⅰ));(Ⅱ) .

试题分析:(Ⅰ)设点 的坐标为 则, ,化简可得轨迹方程.
(Ⅱ)设出直线PE、PF的点斜式方程,分别求出它们与圆)相切条件下与曲线C的另一交个交点Q、R.的坐标,写出直线的方程,点到直线的距离公式可求的底边上的高.进而得出面积的表达式,再探索用基本不等式求该式最值的方法.
试题解析:(Ⅰ)设点       2分
整理得点M所在的曲线C的方程:)        3分

(Ⅱ)由题意可得点P()             4分
因为圆的圆心为(1,0),
所以直线PE与直线PF的斜率互为相反数           5分
设直线PE的方程为
与椭圆方程联立消去,得:
,         6分
由于1是方程的一个解,
所以方程的另一解为            7分
同理                        8分
故直线RQ的斜率为
=    9分
把直线RQ的方程代入椭圆方程,消去整理得
所以       10分
原点O到直线RQ的距离为              11分
   12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知曲线.
(1)若曲线是焦点在轴上的椭圆,求的取值范围;
(2)设,过点的直线与曲线交于,两点,为坐标原点,若为直角,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为且与双曲线有共同焦点.
(1)求椭圆的方程;
(2)在椭圆落在第一象限的图像上任取一点作的切线,求与坐标轴围成的三角形的面积的最小值;
(3)设椭圆的左、右顶点分别为,过椭圆上的一点轴的垂线交轴于点,若点满足,连结于点,求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆两焦点坐标分别为,,且经过点
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知点,直线与椭圆交于两点.若△是以为直角顶点的等腰直角三角形,试求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆)的右焦点为,离心率为.
(Ⅰ)若,求椭圆的方程;
(Ⅱ)设直线与椭圆相交于两点,分别为线段的中点. 若坐标原点在以为直径的圆上,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

给定椭圆C:,若椭圆C的一个焦点为F(,0),其短轴上的一个端点到F的距离为
(I)求椭圆C的方程;
(II)已知斜率为k(k≠0)的直线l与椭圆C交于不同的两点A,B,点Q满足=0,其中N为椭圆的下顶点,求直线在y轴上截距的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知椭圆的离心率为在椭圆C上,A,B为椭圆C的左、右顶点.
(1)求椭圆C的方程:
(2)若P是椭圆上异于A,B的动点,连结AP,PB并延长,分别与右准线相交于M1,M2.问是否存在x轴上定点D,使得以M1M2为直径的圆恒过点D?若存在,求点D的坐标:若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图平面直角坐标系中,椭圆的离心率分别是椭圆的左、右两个顶点,圆的半径为,过点作圆的切线,切点为,在轴的上方交椭圆于点.则       

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知O为坐标原点,P是曲线上到直线距离最小的点,且直线OP是双曲线 的一条渐近线。则的公共点个数是(  )
A.2B.1
C.0D.不能确定,与的值有关

查看答案和解析>>

同步练习册答案