精英家教网 > 高中数学 > 题目详情
5.命题:“?x0>0,使2${\;}^{{x}_{0}}$>10”,这个命题的否定是(  )
A.?x>0,使2x>10B.?x>0,使2x≤10C.?x≤0,使2x≤10D.?x≤0,使2x>10

分析 利用特称命题的否定是全称命题写出结果即可.

解答 解:∵特称命题的否定是全称命题.
∴命题p:“?x0>0,使2${\;}^{{x}_{0}}$>10”,的否定是:?x∈R,?x>0,使2x≤10.
故选:B

点评 本题考查命题的否定,注意量词的变化,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知向量$\overrightarrow a$,$\overrightarrow b$的夹角为$\frac{π}{3}$,且$|{\overrightarrow b}$|=1,$|{\overrightarrow a-2\overrightarrow b}|=\sqrt{7}$,$|{\overrightarrow a}$|=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知直线l:y=k(x+1)+$\sqrt{3}$与圆x2+y2=4交于A、B两点,过A、B分别做l的垂线与x轴交于C、D两点,若|AB|=4,则|CD|=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知z轴上一点N到点A(1,0,3)与点B(-1,1,-2)的距离相等,则点N的坐标为(  )
A.(0,0,-$\frac{1}{2}$)B.(0,0,-$\frac{2}{5}$)C.(0,0,$\frac{1}{2}$)D.(0,0,$\frac{2}{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知双曲线$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{3}$=1的左右焦点分别为F1,F2,过F1的直线与左支相交于A,B两点,如果|AF2|+|BF2|=2|AB|,则|AB|=$4\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.三棱锥S-ABC中,∠ASB=∠ASC=90°,∠BSC=60°,SA=SB=SC=2,点G是△ABC的重心,则|$\overrightarrow{SG}$|等于(  )
A.4B.$\frac{8}{3}$C.$\frac{4\sqrt{3}}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设命题p:m∈{x|x2+(a-8)x-8a≤0},命题q:方程$\frac{{x}^{2}}{m-3}$+$\frac{{y}^{2}}{5-m}$=1表示焦点在x轴上的双曲线.
(1)若当a=1时,命题p∧q假命题,p∨q”为真命题,求实数m的取值范围;
(2)若命题p是命题q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=cosx(x∈[0,2π])与函数g(x)=tanx的图象交于M,N两点,则|$\overrightarrow{OM}$+$\overrightarrow{ON}$|=π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.一个几何体的三视图如图所示.已知这个几何体的体积为8,则h=(  )
A.1B.2C.3D.6

查看答案和解析>>

同步练习册答案