分析:(Ⅰ)欲证面ADF⊥面ACF,根据面面垂直的判定定理可知在平面ADF内一直线与平面ACF垂直,根据题意易证CA⊥AD,而FC⊥面ACD,则CA是FA在面ACD上射影,FA∩AC=A,满足线面垂直的判定定理,则DA⊥面ACF,而DA?面ADF,满足面面垂直的判定定理.
(Ⅱ)先根据VA1-AEF=VE-AA1F将所求的体积进行转化,在面A1B1C1内作B1G⊥A1C1,垂足为G,求出B1G,然后利用体积公式进行求解即可.
解答:解:(Ⅰ)∵BE:CF=1:2
∴DC=2BD,∴DB=BC,
∵△ABD是等腰三角形,
且∠ABD=120°,∴∠BAD=30°,
∴∠CAD=90°,
∵FC⊥面ACD,
∴CA是FA在面ACD上射影,
且CA⊥AD,∵FA∩AC=A,
DA⊥面ACF,DA?面ADF
∴面ADF⊥面ACF.
(Ⅱ)解:∵
VA1-AEF=VE-AA1F.
在面A
1B
1C
1内作B
1G⊥A
1C
1,垂足为G.
B
1G=
面A
1B
1C
1⊥面A
1C
∵B
1G⊥面A
1C,
∵E∈BB
1,而BB
1∥面A
1C,
∴三棱柱E-AA
1F的高为B
1G=
S△AA1F=AA
1•
=
∴
VA1-AEF=VE-AA1F= 点评:本小题考查空间线面关系,正三棱柱的性质,逻辑思维能力,空间想象能力运算能力.