精英家教网 > 高中数学 > 题目详情
如图,已知抛物线的方程为,过点作直线与抛物线相交于两点,点的坐标为,连接,设轴分别相交于两点.如果的斜率与的斜率的乘积为,则的大小等于.

试题分析:设直线PQ的方程为:y=kx-1,P(x1,y1),Q(x2,y2),


则x1+x2=2pk,x1x2=2p,
kBP,kBQ
kBP+kBQ+=+===0,即kBP+kBQ=0①
又kBP•kBQ=-3②,
联立①②解得kBP,kBQ=?
所以∠BNM=,∠BMN=
故∠MBN=π-∠BNM-∠BMN=.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知定点F(1,0),点轴上运动,点轴上,点
为平面内的动点,且满足
(1)求动点的轨迹的方程;
(2)设点是直线上任意一点,过点作轨迹的两条切线,切点分别为,设切线的斜率分别为,直线的斜率为,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的准线与x轴交于点M,过点M作圆的两条切线,切点为A、B,.
(1)求抛物线E的方程;
(2)过抛物线E上的点N作圆C的两条切线,切点分别为P、Q,若P,Q,O(O为原点)三点共线,求点N的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的焦点为,点为抛物线上的一点,其纵坐标为.
(1)求抛物线的方程;
(2)设为抛物线上不同于的两点,且,过两点分别作抛物线的切线,记两切线的交点为,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线的顶点在原点,焦点为,动点在抛物线上,点,则的最小值为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线的焦点为F,过点P(2,0)的直线交抛物线于A,B两点,直线AF,BF分别于抛物线交于点C,D.设直线AB,CD的斜率分别为,则(    )
A.               B.             C.1              D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过抛物线的焦点作直线l交抛物线于A,B两点,分别过A,B作抛物线的切线,则的交点P的轨迹方程是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在平面直角坐标系中,已知三点,直线AC的斜率与倾斜角为钝角的直线AB的斜率之和为,而直线AB恰好经过抛物线)的焦点F并且与抛物线交于P、Q两点(P在Y轴左侧).则(    )
A.9B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系xOy中,抛物线y2=4x的焦点为F,点P在抛物线上,若PF=2,则点P到抛物线顶点O的距离是  

查看答案和解析>>

同步练习册答案