精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,左顶点为,过原点且斜率不为0的直线与椭圆交于两点,其中点在第二象限,过点轴的垂线交于点

⑴求椭圆的标准方程;

⑵当直线的斜率为时,求的面积;

⑶试比较大小.

【答案】见解析

【解析】试题分析:(1利用离心率、左顶点坐标求解即可;(2根据直线过原点且斜率为写出直线方程,联立直线和椭圆方程,求出,再写出直线的方程,求出点的坐标,利用三角形的面积公式进行求解;(3设直线的方程为 ,与椭圆方程联立,得到关于的一元二次方程,利用根与系数的关系、弦长公式及椭圆的对称性进行求解.

试题解析:⑴因为左顶点为,所以

因为椭圆的离心率为,所以,解得

又因为,所以

故所求椭圆的标准方程为

⑵因为直线过原点,且斜率为

所以直线的方程为

代入椭圆方程解得

因为,所以直线的方程为

从而有

的面积等于

方法一:

设直线的方程为

代入椭圆方程得

,则有,解得

从而

由椭圆对称性可得

所以

于是

从而

所以

因为点在第二象限,所以,于是有

方法二:

设点,则点

因为,所以直线的方程为

所以

从而

从而有

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校从参加高三模拟考试的学生中随机抽取60名学生,按其数学成绩(均为整数)分成六组 ,…, 后得到如下部分频率分布直方图,观察图中的信息,回答下列问题:

(1)补全频率分布直方图;

(2)估计本次考试的数学平均成绩(同一组中的数据用该组区间的中点值作代表);

(3)用分层抽样的方法在分数段为的学生成绩中抽取一个容量为6的样本,再从这6个样本中任取2人成绩,求至多有1人成绩在分数段内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在长方形中,的中点,为线段上一动点.现将沿折起,形成四棱锥.

图1 图2 图3

重合,且(如图2).

()证明:平面

()求二面角的余弦值.

不与重合,且平面平面 (如图3),设,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从含有两件正品a,b和一件次品c3件产品中每次任取一件,连续取两次,求取出的两件产品中,恰有一件是次品的概率。

(1)每次取出不放回;(2)每次取出放回;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最小值为

⑴设,求证: 上单调递增;

⑵求证:

⑶求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P﹣A1B1C1D1 , 下部的形状是正四棱柱ABCD﹣A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.

(1)若AB=6m,PO1=2m,则仓库的容积是多少?
(2)若正四棱柱的侧棱长为6m,则当PO1为多少时,仓库的容积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax+bx(a>0,b>0,a≠1,b≠1).
(1)设a=2,b= .
①求方程f(x)=2的根;
②若对于任意x∈R,不等式f(2x)≥mf(x)﹣6恒成立,求实数m的最大值;
(2)若0<a<1,b>1,函数g(x)=f(x)﹣2有且只有1个零点,求ab的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

如图所示,在多面体 中,四边形 均为正方形,点 的中点,过的平面交 于 点

(1) 证明:

(2) 求二面角 的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点列{An}、{Bn}分别在某锐角的两边上且|AnAn+1|=|An+1An+2|,An≠An+1 , n∈N* , |BnBn+1|=|Bn+1Bn+2|,Bn≠Bn+1 , n∈N* , (P≠Q表示点P与Q不重合)若dn=|AnBn|,Sn为△AnBnBn+1的面积,则(  )

A.{Sn}是等差数列
B.{Sn2}是等差数列
C.{dn}是等差数列
D.{dn2}是等差数列

查看答案和解析>>

同步练习册答案