分析 (1)由韦达定理得a2=2,a2=14,由此利用等差数列通项公式能求出首项和公差,由此能求出通项公式.
(2)由等差数列的首项和公差,能求出数列{an}的前10项和.
解答 解:(1)由题意得:一元二次方程$\frac{1}{2}{x}^{2}-8x+14=0$的根为2,14,
∵公差d>0,∴a2=2,a2=14,…(1分)
即$\left\{\begin{array}{l}{{a}_{1}+d=2}\\{{a}_{1}+5d=14}\end{array}\right.$,…(2分)
解得a1=-1,d=3,…(3分)
∴通项公式an=-1+(n-1)×3=3n-4.…(5分)
(2)∵得a1=-1,d=3,
∴S10=$10×(-1)+\frac{10×9}{2}×3$=125.…(7分)
点评 本题考查等差数列的通项公式和前n项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.
科目:高中数学 来源: 题型:选择题
A. | 3 | B. | $\sqrt{7}$ | C. | 1+$\sqrt{3}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | f (-3)>f (-4) | B. | f (-3)<f (-4) | C. | f (-3)=f (-4) | D. | 无法比较 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -1 | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com