精英家教网 > 高中数学 > 题目详情
3.已知等差数列{an}中,公差d>0,且a2、a6是一元二次方程$\frac{1}{2}$x2-8x+14=0的根.
(1)求数列{an}的通项公式an
(2)求数列{an}的前10项和.

分析 (1)由韦达定理得a2=2,a2=14,由此利用等差数列通项公式能求出首项和公差,由此能求出通项公式.
(2)由等差数列的首项和公差,能求出数列{an}的前10项和.

解答 解:(1)由题意得:一元二次方程$\frac{1}{2}{x}^{2}-8x+14=0$的根为2,14,
∵公差d>0,∴a2=2,a2=14,…(1分)
即$\left\{\begin{array}{l}{{a}_{1}+d=2}\\{{a}_{1}+5d=14}\end{array}\right.$,…(2分)
解得a1=-1,d=3,…(3分)
∴通项公式an=-1+(n-1)×3=3n-4.…(5分)
(2)∵得a1=-1,d=3,
∴S10=$10×(-1)+\frac{10×9}{2}×3$=125.…(7分)

点评 本题考查等差数列的通项公式和前n项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.如图所示,在棱长为2的正四面体A-BCD中,E是棱AD的中点,若P是棱AC上一动点,则BP+PE的最小值为(  )
A.3B.$\sqrt{7}$C.1+$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.等差数列{an}的前n项和为Sn,若m>1,m∈N*,且${a_{m-1}}+{a_{m+1}}={a_m}^2\;,\;{S_{2m-1}}=58$,则m=15.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设数列{bn}的前n项和为Sn,且Sn=2bn-2;数列{an}为等差数列,且a5=14,a7=20.
(1)求数列{bn}的通项公式;
(2)求数列{an}的前n项和Rn
(3)若cn=an•bn,Tn为数列{cn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设f(x)是定义在R上的奇函数,且在[0,+∞)上单调递增,则f(-3),f(-4)的大小关系是(  )
A.f (-3)>f (-4)B.f (-3)<f (-4)C.f (-3)=f (-4)D.无法比较

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△ABC中,角A、B、C所对边分别为a、b、c,若asinB=2bsinAcosC,则角C的大小为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若$\int_1^2{({x-a})}dx=\int_0^{\frac{3π}{4}}{cos2xdx}$,则a等于(  )
A.-1B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.直线l的斜率k=x2+1(x∈R),则直线l的倾斜角α的范围为$[\frac{π}{4},\frac{π}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.数列a,a,a,a…,(a∈R)必为(  )
A.等差数列B.等比数列
C.既是等差数列,又是等比数列D.以上都不正确

查看答案和解析>>

同步练习册答案